• español
    • English
  • Login
  • English 
    • español
    • English
  • Publication Types
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
View Item 
  •   IMDEA Networks Home
  • View Item
  •   IMDEA Networks Home
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Henna: hierarchical machine learning inference in programmable switches

Share
Files
Author version of accepted paper (837.1Kb)
Identifiers
URI: https://hdl.handle.net/20.500.12761/1648
Metadata
Show full item record
Author(s)
Akem, Aristide Tanyi-Jong; Bütün, Beyza; Gucciardo, Michele; Fiore, Marco
Date
2022-12-09
Abstract
The recent proliferation of programmable network equipment has opened up new possibilities for embedding intelligence into the data plane. Deploying models directly in the data plane promises to achieve high throughput and low latency inference capabilities that cannot be attained with traditional closed loops involving control-plane operations. Recent efforts have paved the way for the integration of trained machine learning models in resource-constrained programmable switches, yet current solutions have significant limitations that translate into performance barriers when coping with complex inference tasks. In this paper, we present Henna, a first in-switch implementation of a hierarchical classification system. The concept underpinning our solution is that of splitting a difficult classification task into easier cascaded decisions, which can then be addressed with separated and resource-efficient tree-based classifiers. We propose a design of Henna that aligns with the internal organization of the Protocol Independent Switch Architecture (PISA), and integrates state-of-the-art strategies for mapping decision trees to switch hardware. We then implement Henna into a real testbed with off-the-shelf Intel Tofino programmable switches using the P4 language. Experiments with a complex 21-category classification task based on measurement data demonstrate how Henna improves the F1 score of an advanced single-stage model by 21%, while keeping usage of switch resources at 8% on average.
Share
Files
Author version of accepted paper (837.1Kb)
Identifiers
URI: https://hdl.handle.net/20.500.12761/1648
Metadata
Show full item record

Browse

All of IMDEA NetworksBy Issue DateAuthorsTitlesKeywordsTypes of content

My Account

Login

Statistics

View Usage Statistics

Dissemination

emailContact person Directory wifi Eduroam rss_feed News
IMDEA initiative About IMDEA Networks Organizational structure Annual reports Transparency
Follow us in:
Community of Madrid

EUROPEAN UNION

European Social Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

European Structural and Investment Fund

© 2021 IMDEA Networks. | Accesibility declaration | Privacy Policy | Disclaimer | Cookie policy - We value your privacy: this site uses no cookies!