Mostrar el registro sencillo del ítem

dc.contributor.authorAkem, Aristide Tanyi-Jong 
dc.contributor.authorBütün, Beyza 
dc.contributor.authorGucciardo, Michele 
dc.contributor.authorFiore, Marco 
dc.date.accessioned2023-01-09T09:52:36Z
dc.date.available2023-01-09T09:52:36Z
dc.date.issued2022-12-09
dc.identifier.urihttps://hdl.handle.net/20.500.12761/1648
dc.description.abstractThe recent proliferation of programmable network equipment has opened up new possibilities for embedding intelligence into the data plane. Deploying models directly in the data plane promises to achieve high throughput and low latency inference capabilities that cannot be attained with traditional closed loops involving control-plane operations. Recent efforts have paved the way for the integration of trained machine learning models in resource-constrained programmable switches, yet current solutions have significant limitations that translate into performance barriers when coping with complex inference tasks. In this paper, we present Henna, a first in-switch implementation of a hierarchical classification system. The concept underpinning our solution is that of splitting a difficult classification task into easier cascaded decisions, which can then be addressed with separated and resource-efficient tree-based classifiers. We propose a design of Henna that aligns with the internal organization of the Protocol Independent Switch Architecture (PISA), and integrates state-of-the-art strategies for mapping decision trees to switch hardware. We then implement Henna into a real testbed with off-the-shelf Intel Tofino programmable switches using the P4 language. Experiments with a complex 21-category classification task based on measurement data demonstrate how Henna improves the F1 score of an advanced single-stage model by 21%, while keeping usage of switch resources at 8% on average.es
dc.description.sponsorshipEuropean Union Horizon 2020 research and innovation program under Marie Skłodowska-Curie grant agreement no. 860239 “BANYAN”es
dc.description.sponsorshipCHIST-ERA grant no. CHIST-ERA-20-SICT- 001 “ECOMOME”, via grant PCI2022-133013 of Agencia Estatal de Investigaciónes
dc.description.sponsorshipEuropean Union Horizon 2020 research and innovation program under grant agreement no. 101017109 “DAEMON”es
dc.language.isoenges
dc.titleHenna: hierarchical machine learning inference in programmable switcheses
dc.typeconference objectes
dc.conference.date9 December 2022es
dc.conference.placeRome, Italyes
dc.conference.titleInternational Workshop on Native Network Intelligence*
dc.event.typeworkshopes
dc.pres.typepaperes
dc.type.hasVersionAMes
dc.rights.accessRightsopen accesses
dc.page.final7es
dc.page.initial1es
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/860239/EU/Big dAta aNalYtics for radio Access Networks/BANYANes
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/101017109/EU/Network intelligence for aDAptive and sElf-Learning MObile Networks/DAEMONes
dc.relation.projectNameBANYAN (Big dAta aNalYtics for radio Access Networks)es
dc.relation.projectNameDAEMON (Network intelligence for aDAptive and sElf-Learning MObile Networks)es
dc.relation.projectNameECOMOME (Energy COnsumption Measurements and Optimization in Mobile nEtworks)es
dc.subject.keywordProgrammable switches
dc.subject.keywordmachine learninges
dc.subject.keywordin-switch inferencees
dc.subject.keywordP4es
dc.description.refereedTRUEes
dc.description.statuspubes


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem