• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Henna: hierarchical machine learning inference in programmable switches

Compartir
Ficheros
Author version of accepted paper (837.1Kb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1648
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Akem, Aristide Tanyi-Jong; Bütün, Beyza; Gucciardo, Michele; Fiore, Marco
Fecha
2022-12-09
Resumen
The recent proliferation of programmable network equipment has opened up new possibilities for embedding intelligence into the data plane. Deploying models directly in the data plane promises to achieve high throughput and low latency inference capabilities that cannot be attained with traditional closed loops involving control-plane operations. Recent efforts have paved the way for the integration of trained machine learning models in resource-constrained programmable switches, yet current solutions have significant limitations that translate into performance barriers when coping with complex inference tasks. In this paper, we present Henna, a first in-switch implementation of a hierarchical classification system. The concept underpinning our solution is that of splitting a difficult classification task into easier cascaded decisions, which can then be addressed with separated and resource-efficient tree-based classifiers. We propose a design of Henna that aligns with the internal organization of the Protocol Independent Switch Architecture (PISA), and integrates state-of-the-art strategies for mapping decision trees to switch hardware. We then implement Henna into a real testbed with off-the-shelf Intel Tofino programmable switches using the P4 language. Experiments with a complex 21-category classification task based on measurement data demonstrate how Henna improves the F1 score of an advanced single-stage model by 21%, while keeping usage of switch resources at 8% on average.
Compartir
Ficheros
Author version of accepted paper (837.1Kb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1648
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!