• español
    • English
  • Login
  • English 
    • español
    • English
  • Publication Types
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
View Item 
  •   IMDEA Networks Home
  • View Item
  •   IMDEA Networks Home
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

TTrees: Automated Classification of Causes of Network Anomalies with Little Data

Share
Files
TTreess.pdf (6.482Mb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/949
Metadata
Show full item record
Author(s)
Moulay, Mohamed; García, Rafael; Mancuso, Vincenzo; Rojo, Pablo; Fernández Anta, Antonio
Date
2021-06
Abstract
Leveraging machine learning (ML) for the detection of network problems dates back to handling call-dropping issues in telephony. However, troubleshooting cellular networks is still a manual task, assigned to experts who monitor the network around the clock. We present here TTrees (from Troubleshooting Trees), a practical and interpretable ML software tool that implements a methodology we have designed to automate the identification of the causes of performance anomalies in a cellular network. This methodology is unsupervised and combines multiple ML algorithms (e.g., decision trees and clustering). TTrees requires small volumes of data and is quick at training. Our experiments using real data from operational commercial mobile networks show that TTrees can automatically identify and accurately classify network anomalies—e.g., cases for which a network low performance is not apparently justified by operational conditions—training with just a few hundreds of data samples, hence enabling precise troubleshooting actions.
Share
Files
TTreess.pdf (6.482Mb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/949
Metadata
Show full item record

Browse

All of IMDEA NetworksBy Issue DateAuthorsTitlesKeywordsTypes of content

My Account

Login

Statistics

View Usage Statistics

Dissemination

emailContact person Directory wifi Eduroam rss_feed News
IMDEA initiative About IMDEA Networks Organizational structure Annual reports Transparency
Follow us in:
Community of Madrid

EUROPEAN UNION

European Social Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

European Structural and Investment Fund

© 2021 IMDEA Networks. | Accesibility declaration | Privacy Policy | Disclaimer | Cookie policy - We value your privacy: this site uses no cookies!