• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

TTrees: Automated Classification of Causes of Network Anomalies with Little Data

Compartir
Ficheros
TTreess.pdf (6.482Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/949
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Moulay, Mohamed; García, Rafael; Mancuso, Vincenzo; Rojo, Pablo; Fernández Anta, Antonio
Fecha
2021-06
Resumen
Leveraging machine learning (ML) for the detection of network problems dates back to handling call-dropping issues in telephony. However, troubleshooting cellular networks is still a manual task, assigned to experts who monitor the network around the clock. We present here TTrees (from Troubleshooting Trees), a practical and interpretable ML software tool that implements a methodology we have designed to automate the identification of the causes of performance anomalies in a cellular network. This methodology is unsupervised and combines multiple ML algorithms (e.g., decision trees and clustering). TTrees requires small volumes of data and is quick at training. Our experiments using real data from operational commercial mobile networks show that TTrees can automatically identify and accurately classify network anomalies—e.g., cases for which a network low performance is not apparently justified by operational conditions—training with just a few hundreds of data samples, hence enabling precise troubleshooting actions.
Compartir
Ficheros
TTreess.pdf (6.482Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/949
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!