• español
    • English
  • Login
  • English 
    • español
    • English
  • Publication Types
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
View Item 
  •   IMDEA Networks Home
  • View Item
  •   IMDEA Networks Home
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Energy-Optimal Sampling of Edge-Based Feedback Systems

Share
Files
ICC_SAGE_Workshop_OptimumSampling_FinalVersion.pdf (199.3Kb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/938
Metadata
Show full item record
Author(s)
Champati, Jaya Prakash
Date
2021-06
Abstract
We study a problem of optimizing the sampling interval in an edge-based feedback system, where sensor samples are offloaded to a back-end server which process them and generates a feedback that is fed-back to a user. Sampling the system at maximum frequency results in the detection of events of interest with minimum delay but incurs higher energy costs due to the communication and processing of some redundant samples. On the other hand, lower sampling frequency results in a higher delay in detecting an event of interest thus increasing the idle energy usage and degrading the quality of experience. We propose a method to quantify this trade-off and compute the optimal sampling interval, and use simulation to demonstrate the energy savings.
Share
Files
ICC_SAGE_Workshop_OptimumSampling_FinalVersion.pdf (199.3Kb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/938
Metadata
Show full item record

Browse

All of IMDEA NetworksBy Issue DateAuthorsTitlesKeywordsTypes of content

My Account

Login

Statistics

View Usage Statistics

Dissemination

emailContact person Directory wifi Eduroam rss_feed News
IMDEA initiative About IMDEA Networks Organizational structure Annual reports Transparency
Follow us in:
Community of Madrid

EUROPEAN UNION

European Social Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

European Structural and Investment Fund

© 2021 IMDEA Networks. | Accesibility declaration | Privacy Policy | Disclaimer | Cookie policy - We value your privacy: this site uses no cookies!