• español
    • English
  • Login
  • English 
    • español
    • English
  • Publication Types
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
View Item 
  •   IMDEA Networks Home
  • View Item
  •   IMDEA Networks Home
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Mixture Density Channel Model for Deep Learning-Based Wireless Physical Layer Design

Share
Files
ACM_MSWiM_2020___TRK__Copy_ (1).pdf (2.890Mb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/886
Metadata
Show full item record
Author(s)
Garcia Marti, Dolores; Palacios, Joan; Lacruz, Jesús Omar; Widmer, Joerg
Date
2020-11-16
Abstract
Machine learning is a highly promising tool to design the physicallayer of wireless communication systems, but it usually requiresthat a channel model is known. As data rates increase and wirelesstransceivers become more complex, the wireless channel, hard-ware imperfections, and their interactions become more difficult tomodel and compensate explicitly. New machine learning schemesfor the physical layer do not require an explicit model butimplic-itly learnthe end-to-end link including channel characteristics andnon-linearities of the system directly from the training data.In this paper, we present a novel neural network architecturethat provides anexplicitstochastic channel model, by learning theparameters of a Gaussian mixture distribution from real channelsamples. We use this channel model in conjunction with an au-toencoder for physical layer design to learn a suitable modulationscheme. Since our system learns an explicit model for the channel,we can use transfer learning to adapt more quickly to changes inthe environment. We apply our model to millimeter wave commu-nications with its challenges of phased arrays with a large numberof antennas, high carrier frequencies, wide bandwidth and complexchannel characteristics. We experimentally validate the systemusing a 60 GHz FPGA-based testbed and show that it is able toreproduce the channel characteristics with good accuracy.
Share
Files
ACM_MSWiM_2020___TRK__Copy_ (1).pdf (2.890Mb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/886
Metadata
Show full item record

Browse

All of IMDEA NetworksBy Issue DateAuthorsTitlesKeywordsTypes of content

My Account

Login

Statistics

View Usage Statistics

Dissemination

emailContact person Directory wifi Eduroam rss_feed News
IMDEA initiative About IMDEA Networks Organizational structure Annual reports Transparency
Follow us in:
Community of Madrid

EUROPEAN UNION

European Social Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

European Structural and Investment Fund

© 2021 IMDEA Networks. | Accesibility declaration | Privacy Policy | Disclaimer | Cookie policy - We value your privacy: this site uses no cookies!