• español
    • English
  • Login
  • English 
    • español
    • English
  • Publication Types
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
View Item 
  •   IMDEA Networks Home
  • View Item
  •   IMDEA Networks Home
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimizing Network Slicing via Virtual Resource Pool Partitioning

Share
Files
Optimizing_Network_Slicing_Virtual_Resource_Pool_Partitioning_2019_EN.pdf (574.0Kb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/866
Metadata
Show full item record
Author(s)
Caballero Garcés, Pablo; de Veciana, Gustavo; Banchs, Albert; Perez-Costa, Xavier
Date
2019-06-03
Abstract
This paper focuses on optimizing resource allocation amongst a set of tenants, network slices, supporting dynamic customer loads over a set of distributed resources, e.g., base stations. The aim is to reap the benefits of statistical multiplexing resulting from flexible sharing of `pooled' resources, while enabling tenants to differentiate and protect their performance from one another's load fluctuations. To that end we consider a setting where resources are grouped into Virtual Resource Pools (VRPs) wherein resource allocation is jointly and dynamically managed. Specifically for each VRP we adopt a Share-Constrained Proportionally Fair (SCPF) allocation scheme where each tenant is allocated a fixed share (budget). This budget is to be distributed equally amongst its active customers which in turn are granted fractions of their associated VRP resources in proportion to customer shares. For a VRP with a single resource, this translates to the well known Generalized Processor Sharing (GPS) policy. For VRPs with multiple resources SCPF provides a flexible means to achieve load elastic allocations across tenants sharing the pool. Given tenants' per resource shares and expected loads, this paper formulates the problem of determining optimal VRP partitions which maximize the overall expected shared weighted utility while ensuring protection guarantees. For a high load/capacity setting we exhibit this network utility function explicitly, quantifying the benefits and penalties of any VRP partition, in terms of network slices' ability to achieve performance differentiation, load balancing, and statistical multiplexing. Although the problem is shown to be NP-Hard, a simple greedy heuristic is shown to be effective. Analysis and simulations confirm that the selection of optimal VRP partitions provide a practical avenue towards improving network utility in network slicing scenarios with dynamic loads.
Share
Files
Optimizing_Network_Slicing_Virtual_Resource_Pool_Partitioning_2019_EN.pdf (574.0Kb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/866
Metadata
Show full item record

Browse

All of IMDEA NetworksBy Issue DateAuthorsTitlesKeywordsTypes of content

My Account

Login

Statistics

View Usage Statistics

Dissemination

emailContact person Directory wifi Eduroam rss_feed News
IMDEA initiative About IMDEA Networks Organizational structure Annual reports Transparency
Follow us in:
Community of Madrid

EUROPEAN UNION

European Social Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

European Structural and Investment Fund

© 2021 IMDEA Networks. | Accesibility declaration | Privacy Policy | Disclaimer | Cookie policy - We value your privacy: this site uses no cookies!