• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

LSTM-based GNSS Spoofing Detection Using Low-cost Spectrum Sensors

Compartir
Ficheros
wowmom_20_camera_ready.pdf (1.687Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/813
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Calvo-Palomino, Roberto; Bhattacharya, Arani; Bovet, Gerome; Giustiniano, Domenico
Fecha
2020-08-31
Resumen
GNSS/GPS is a positioning system widely used nowadays in our lives for real-time localization in Earth. This technology is highly vulnerable to spoofing/jamming attacks caused by malicious intruders. In the recent years, commodity and low-cost radio-frequency hardware have been used to interfere with the legitimate GPS signal. Existing spoofing detection solutions use costly receivers and computationally expensive algorithms which limit the large-scale deployment. In this work we propose a GNSS spoofing detection system that can run on spectrum sensors with Software-Defined Radio (SDR) capabilities and cost in the order of 20 euros. Our approach exploits the predictability of the Doppler characteristics of the received GPS signals to determine the presence of anomalies or malicious attackers. We propose an artificial recurrent neural network (RNN) based on Long short-term memory (LSTM) for anomaly detection. We use data received by low-cost SDR receivers that are processed locally by low-cost embedded machines such as Nvidia Jetson Nano to provide inference capabilities. We show that our solution predicts very accurately the Doppler shift of GNSS signals and can determine the presence of a spoofing transmitter.
Compartir
Ficheros
wowmom_20_camera_ready.pdf (1.687Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/813
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!