• español
    • English
  • Login
  • English 
    • español
    • English
  • Publication Types
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
View Item 
  •   IMDEA Networks Home
  • View Item
  •   IMDEA Networks Home
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

DeepFloat: Resource-Efficient Dynamic Management of Vehicular Floating Content

Share
Files
DeepFloat_2019_EN.pdf (1.054Mb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/774
Metadata
Show full item record
Author(s)
Manzo, Gaetano; Otálora, Sebastian; Ajmone Marsan, Marco; Braun, Torsten; Nguyen, Hung; Rizzo, Gianluca
Date
2019-08
Abstract
Opportunistic communications are expected to play a crucial role in vehicular services that are based on location and require extremely low latency. A widely investigated opportunistic communication paradigm for the local dissemination of contextualized information is Floating Content (FC), which tries to make content float over a geographical area by replicating it whenever two users meet. The key Quality of Service (QoS)indicator for FC is content availability, defined as the fraction of users that received the information that is supposed to float. Optimizing the use of FC resources while meeting the availability target QoS is a highly complex issue. Fully distributed, distance-based approaches proved to be highly inefficient, and may not meet the target QoS. Centralized, model-based approaches do not perform well in realistic inhomogeneous settings. In this work, we present a data-driven centralized approach to resource-efficient, QoS-aware dynamic management of FC. We propose a Deep Learning strategy for FC operation, which employs a Convolutional Neural Network (CNN) to capture the relations between the patterns of users mobility, the patterns of content diffusion and replication, and the performance of FC in terms of resource efficiency and availability within a given Zone of Interest (ZOI). Numerical evaluations show the effectiveness of our approach, as well as the capability of our approach to adapt to mobility pattern changes over time.
Share
Files
DeepFloat_2019_EN.pdf (1.054Mb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/774
Metadata
Show full item record

Browse

All of IMDEA NetworksBy Issue DateAuthorsTitlesKeywordsTypes of content

My Account

Login

Statistics

View Usage Statistics

Dissemination

emailContact person Directory wifi Eduroam rss_feed News
IMDEA initiative About IMDEA Networks Organizational structure Annual reports Transparency
Follow us in:
Community of Madrid

EUROPEAN UNION

European Social Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

European Structural and Investment Fund

© 2021 IMDEA Networks. | Accesibility declaration | Privacy Policy | Disclaimer | Cookie policy - We value your privacy: this site uses no cookies!