• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

DeepFloat: Resource-Efficient Dynamic Management of Vehicular Floating Content

Compartir
Ficheros
DeepFloat_2019_EN.pdf (1.054Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/774
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Manzo, Gaetano; Otálora, Sebastian; Ajmone Marsan, Marco; Braun, Torsten; Nguyen, Hung; Rizzo, Gianluca
Fecha
2019-08
Resumen
Opportunistic communications are expected to play a crucial role in vehicular services that are based on location and require extremely low latency. A widely investigated opportunistic communication paradigm for the local dissemination of contextualized information is Floating Content (FC), which tries to make content float over a geographical area by replicating it whenever two users meet. The key Quality of Service (QoS)indicator for FC is content availability, defined as the fraction of users that received the information that is supposed to float. Optimizing the use of FC resources while meeting the availability target QoS is a highly complex issue. Fully distributed, distance-based approaches proved to be highly inefficient, and may not meet the target QoS. Centralized, model-based approaches do not perform well in realistic inhomogeneous settings. In this work, we present a data-driven centralized approach to resource-efficient, QoS-aware dynamic management of FC. We propose a Deep Learning strategy for FC operation, which employs a Convolutional Neural Network (CNN) to capture the relations between the patterns of users mobility, the patterns of content diffusion and replication, and the performance of FC in terms of resource efficiency and availability within a given Zone of Interest (ZOI). Numerical evaluations show the effectiveness of our approach, as well as the capability of our approach to adapt to mobility pattern changes over time.
Compartir
Ficheros
DeepFloat_2019_EN.pdf (1.054Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/774
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!