• español
    • English
  • Login
  • English 
    • español
    • English
  • Publication Types
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
View Item 
  •   IMDEA Networks Home
  • View Item
  •   IMDEA Networks Home
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Machine Learning approach to 5G Infrastructure Market optimization

Share
Files
tmc_2018.pdf (8.974Mb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/674
ISSN: 1536-1233
DOI: DOI: 10.1109/TMC.2019.2896950
Metadata
Show full item record
Author(s)
Bega, Dario; Gramaglia, Marco; Banchs, Albert; Sciancalepore, Vincenzo; Costa-Perez, Xavier
Date
2020-03-01
Abstract
It is now commonly agreed that future 5G Networks will build upon the network slicing concept. The ability to provide virtual, logically independent "slices" of the network will also have an impact on the models that will sustain the business ecosystem. Network slicing will open the door to new players: the infrastructure provider, which is the owner of the infrastructure, and the tenants, which may acquire a network slice from the infrastructure provider to deliver a specific service to their customers. In this new context, how to correctly handle resource allocation among tenants and how to maximize the monetization of the infrastructure become fundamental problems that need to be solved. In this paper, we address this issue by designing a network slice admission control algorithm that (i) autonomously learns the best acceptance policy while (ii) it ensures that the service guarantees provided to tenants are always satisfied. The contributions of this paper include: (i) an analytical model for the admissibility region of a network slicing-capable 5G Network, (ii) the analysis of the system (modeled as a Semi-Markov Decision Process) and the optimization of the infrastructure providers revenue, and (iii) the design of a machine learning algorithm that can be deployed in practical settings and achieves close to optimal performance.
Share
Files
tmc_2018.pdf (8.974Mb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/674
ISSN: 1536-1233
DOI: DOI: 10.1109/TMC.2019.2896950
Metadata
Show full item record

Browse

All of IMDEA NetworksBy Issue DateAuthorsTitlesKeywordsTypes of content

My Account

Login

Statistics

View Usage Statistics

Dissemination

emailContact person Directory wifi Eduroam rss_feed News
IMDEA initiative About IMDEA Networks Organizational structure Annual reports Transparency
Follow us in:
Community of Madrid

EUROPEAN UNION

European Social Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

European Structural and Investment Fund

© 2021 IMDEA Networks. | Accesibility declaration | Privacy Policy | Disclaimer | Cookie policy - We value your privacy: this site uses no cookies!