• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unsupervised Scalable Statistical Method for Identifying Influential Users in Online Social Networks

Compartir
Ficheros
3-Unsupervised Scalable Statistical Method for Identifying Influential Users in Online Social Networks-v5.pdf (1.002Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/568
ISSN: 2045-2322
DOI: https://doi.org/10.1038/s41598-018-24874-2
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Azcorra, Arturo; Chiroque, Luis F.; Cuevas, Rubén; Fernández Anta, Antonio; Laniado, Henry; Lillo, Rosa Elvira; Romo, Juan; Sguera, Carlo
Fecha
2018-05-03
Resumen
Billions of users interact intensively every day via Online Social Networks (OSNs) such as Facebook, Twitter, or Google+. This makes OSNs an invaluable source of information, and channel of actuation, for sectors like advertising, marketing, or politics. To get the most of OSNs, analysts need to identify influential users that can be leveraged for promoting products, distributing messages, or improving the image of companies. In this report we propose a new unsupervised method, Massive Unsupervised Outlier Detection (MUOD), based on outliers detection, for providing support in the identification of influential users. MUOD is scalable, and can hence be used in large OSNs. Moreover, it labels the outliers as of shape, magnitude, or amplitude, depending of their features. This allows classifying the outlier users in multiple different classes, which are likely to include different types of influential users. Applying MUOD to a subset of roughly 400 million Google+ users, it has allowed identifying and discriminating automatically sets of outlier users, which present features associated to different definitions of influential users, like capacity to attract engagement, capacity to attract a large number of followers, or high infection capacity.
Compartir
Ficheros
3-Unsupervised Scalable Statistical Method for Identifying Influential Users in Online Social Networks-v5.pdf (1.002Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/568
ISSN: 2045-2322
DOI: https://doi.org/10.1038/s41598-018-24874-2
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!