• español
    • English
  • Login
  • English 
    • español
    • English
  • Publication Types
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
View Item 
  •   IMDEA Networks Home
  • View Item
  •   IMDEA Networks Home
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Statistical Multiplexing and Traffic Shaping Games for Network Slicing

Share
Files
Statistical_Multiplexing_Traffic_Shaping_Games_Network_Slicing_2017_EN.pdf (754.0Kb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/412
Metadata
Show full item record
Author(s)
Zheng, Jiaxiao; Caballero Garcés, Pablo; de Veciana, Gustavo; Baek, Seung Jun; Banchs, Albert
Date
2017-05-15
Abstract
Next generation wireless architectures are expected to enable slices of shared wireless infrastructure which are customized to specific mobile operators/services. Given infrastructure costs and stochastic nature of mobile services' spatial loads, it is highly desirable to achieve efficient statistical multiplexing amongst network slices. We study a simple dynamic resource sharing policy which allocates a 'share' of a pool of (distributed) resources to each slice- Share Constrained Proportionally Fair (SCPF). We give a characterization of the achievable performance gains over static slicing, showing higher gains when a slice's spatial load is more 'imbalanced' than, and/or 'orthogonal' to, the aggregate network load. Under SCPF, traditional network dimensioning translates to a coupled share dimensioning problem, addressing the existence of a feasible share allocation given slices' expected loads and performance requirements. We provide a solution to robust share dimensioning for SCPF-based network slicing. Slices may wish to unilaterally manage their users' performance via admission control which maximizes their carried loads subject to performance requirements. We show this can be modeled as a "traffic shaping" game with an achievable Nash equilibrium. Under high loads, the equilibrium is explicitly characterized, as are the gains in the carried load under SCPF vs. static slicing. Detailed simulations of a wireless infrastructure supporting multiple slices with heterogeneous mobile loads show the fidelity of our models and range of validity of our high load equilibrium analysis.
Share
Files
Statistical_Multiplexing_Traffic_Shaping_Games_Network_Slicing_2017_EN.pdf (754.0Kb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/412
Metadata
Show full item record

Browse

All of IMDEA NetworksBy Issue DateAuthorsTitlesKeywordsTypes of content

My Account

Login

Statistics

View Usage Statistics

Dissemination

emailContact person Directory wifi Eduroam rss_feed News
IMDEA initiative About IMDEA Networks Organizational structure Annual reports Transparency
Follow us in:
Community of Madrid

EUROPEAN UNION

European Social Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

European Structural and Investment Fund

© 2021 IMDEA Networks. | Accesibility declaration | Privacy Policy | Disclaimer | Cookie policy - We value your privacy: this site uses no cookies!