Mostrar el registro sencillo del ítem

dc.contributor.authorFiandrino, Claudio 
dc.contributor.authorAnjomshoa, Fazel
dc.contributor.authorKantarci, Burak
dc.contributor.authorKliazovich, Dzmitry
dc.contributor.authorBouvry, Pascal
dc.contributor.authorMatthews, Jeanna
dc.date.accessioned2021-07-13T09:29:50Z
dc.date.available2021-07-13T09:29:50Z
dc.date.issued2017-10-01
dc.identifier.issn2377-3790
dc.identifier.urihttp://hdl.handle.net/20.500.12761/397
dc.description.abstractSmart cities exploit the most advanced information technologies like Internet of Things to improve and add value to existing public services. Having citizens involved in the process through mobile crowdsensing (MCS) techniques augments the capabilities of the platform without additional costs. In this paper, we propose a novel framework for data acquisition in MCS deployed over a fog computing platform which facilitates important operations like user recruitment and task completion. Proper data acquisition minimizes the monetary expenditure the platform sustains to recruit and compensate users and the energy they spend to sense and deliver data. We propose a new user recruitment policy called DSE (Distance, Sociability, Energy). The policy exploits three criteria: i) spatial distance between users and tasks, ii) user sociability, which is an estimate of the willingness of users to contribute to sensing tasks, and iii) remaining battery charge the devices. Performance evaluation is conducted in a real urban environment for a large number of participants with new metrics that assess the efficiency of the recruitment policy and the accuracy of task completion. Results reveal that the average number of recruited users improves by nearly 20% if compared to policies using only spatial distance as selection criterion.
dc.language.isoeng
dc.publisherIEEE
dc.titleSociability-Driven Framework for Data Acquisition in Mobile Crowdsensing over Fog Computing Platforms for Smart Citiesen
dc.typejournal article
dc.journal.titleIEEE Transactions on Sustainable Computing
dc.type.hasVersionVoR
dc.rights.accessRightsopen access
dc.volume.number2
dc.issue.number4
dc.identifier.urlhttp://dx.doi.org/10.1109/TSUSC.2017.2702060
dc.identifier.doidoi:10.1109/TSUSC.2017.2702060
dc.page.final358
dc.page.initial345
dc.subject.keywordData acquisition
dc.subject.keywordfog computing
dc.subject.keywordinternet of things
dc.subject.keywordmobile crowdsensing
dc.subject.keywordsmart city sensing
dc.subject.keywordsustainability
dc.description.statuspub
dc.eprint.idhttp://eprints.networks.imdea.org/id/eprint/1610


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem