• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sociability-Driven Framework for Data Acquisition in Mobile Crowdsensing over Fog Computing Platforms for Smart Cities

Compartir
Ficheros
tsusc-socrecruit.pdf (6.900Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/397
ISSN: 2377-3790
DOI: doi:10.1109/TSUSC.2017.2702060
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Fiandrino, Claudio; Anjomshoa, Fazel; Kantarci, Burak; Kliazovich, Dzmitry; Bouvry, Pascal; Matthews, Jeanna
Fecha
2017-10-01
Resumen
Smart cities exploit the most advanced information technologies like Internet of Things to improve and add value to existing public services. Having citizens involved in the process through mobile crowdsensing (MCS) techniques augments the capabilities of the platform without additional costs. In this paper, we propose a novel framework for data acquisition in MCS deployed over a fog computing platform which facilitates important operations like user recruitment and task completion. Proper data acquisition minimizes the monetary expenditure the platform sustains to recruit and compensate users and the energy they spend to sense and deliver data. We propose a new user recruitment policy called DSE (Distance, Sociability, Energy). The policy exploits three criteria: i) spatial distance between users and tasks, ii) user sociability, which is an estimate of the willingness of users to contribute to sensing tasks, and iii) remaining battery charge the devices. Performance evaluation is conducted in a real urban environment for a large number of participants with new metrics that assess the efficiency of the recruitment policy and the accuracy of task completion. Results reveal that the average number of recruited users improves by nearly 20% if compared to policies using only spatial distance as selection criterion.
Compartir
Ficheros
tsusc-socrecruit.pdf (6.900Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/397
ISSN: 2377-3790
DOI: doi:10.1109/TSUSC.2017.2702060
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!