Show simple item record

dc.contributor.authorJabbari, MohammadErfan 
dc.contributor.authorDuttagupta, Abhishek 
dc.contributor.authorFiandrino, Claudio 
dc.contributor.authorBonati, Leonardo
dc.contributor.authorD'Oro, Salvatore
dc.contributor.authorPolese, Michele
dc.contributor.authorFiore, Marco 
dc.contributor.authorMelodia, Tommaso
dc.date.accessioned2026-02-05T11:54:01Z
dc.date.available2026-02-05T11:54:01Z
dc.date.issued2026-05
dc.identifier.citationMohammadErfan Jabbari, Abhishek Duttagupta, Claudio Fiandrino, Leonardo Bonati, Salvatore D’Oro, Michele Polese, Marco Fiore, Tommaso Melodia, “SIA: Symbolic Interpretability for Anticipatory Deep Reinforcement Learning in Network Control,” Proceedings of IEEE INFOCOM 2026 (IEEE International Conference on Computer Communications), Tokyo, Japan, May 18–21, 2026.es
dc.identifier.urihttps://hdl.handle.net/20.500.12761/2009
dc.description.abstractDeep Reinforcement Learning (DRL) promises adap- tive control for future mobile networks but conventional agents remain reactive: they act on past and current measurements and cannot leverage short-term forecasts of exogenous Key Performance Indicators ( KPIs) such as bandwidth. Augmenting agents with predictions can overcome this temporal myopia, yet uptake in networking is scarce because forecast-aware agents act as closed-boxes; operators cannot tell whether predictions guide decisions or justify the added complexity. We propose SIA, the first interpreter that exposes in real time how forecast- augmented DRL agents operate. SIA fuses Symbolic AI abstractions with per- KPI Knowledge Graphs to produce explanations, and includes a new Influence Score ( IS) metric. SIA achieves sub-millisecond speed, over 200× faster than existing EXplainable Artificial Intelligence (XAI) methods. We evaluate SIA on three diverse networking use cases, uncovering hidden issues, including temporal misalignment in forecast integration and reward-design biases that trigger counter-productive policies. These insights enable targeted fixes: a redesigned agent achieves a 9% higher average bitrate in video streaming, and SIA’s online Action-Refinement module improves RAN-slicing reward by 25% without retraining. By making anticipatory DRL transparent and tunable, SIA lowers the barrier to proactive control in next-generation mobile networks.es
dc.language.isoenges
dc.titleSIA: Symbolic Interpretability for Anticipatory Deep Reinforcement Learning in Network Controles
dc.typeconference objectes
dc.conference.date18–21 May 2026es
dc.conference.placeTokyo, Japanes
dc.conference.titleIEEE International Conference on Computer Communications *
dc.event.typeconferencees
dc.pres.typepaperes
dc.type.hasVersionAMes
dc.rights.accessRightsopen accesses
dc.acronymINFOCOM*
dc.rankA**
dc.subject.keywordDeep Reinforcement Learninges
dc.subject.keywordDeep Learninges
dc.subject.keywordExplainable AIes
dc.description.refereedTRUEes
dc.description.statusinpresses


Files in this item

This item appears in the following Collection(s)

Show simple item record