• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

SIA: Symbolic Interpretability for Anticipatory Deep Reinforcement Learning in Network Control

Compartir
Ficheros
XRL_proactive_agents_author.pdf (705.8Kb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/2009
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Jabbari, MohammadErfan; Duttagupta, Abhishek; Fiandrino, Claudio; Bonati, Leonardo; D'Oro, Salvatore; Polese, Michele; Fiore, Marco; Melodia, Tommaso
Fecha
2026-05
Resumen
Deep Reinforcement Learning (DRL) promises adap- tive control for future mobile networks but conventional agents remain reactive: they act on past and current measurements and cannot leverage short-term forecasts of exogenous Key Performance Indicators ( KPIs) such as bandwidth. Augmenting agents with predictions can overcome this temporal myopia, yet uptake in networking is scarce because forecast-aware agents act as closed-boxes; operators cannot tell whether predictions guide decisions or justify the added complexity. We propose SIA, the first interpreter that exposes in real time how forecast- augmented DRL agents operate. SIA fuses Symbolic AI abstractions with per- KPI Knowledge Graphs to produce explanations, and includes a new Influence Score ( IS) metric. SIA achieves sub-millisecond speed, over 200× faster than existing EXplainable Artificial Intelligence (XAI) methods. We evaluate SIA on three diverse networking use cases, uncovering hidden issues, including temporal misalignment in forecast integration and reward-design biases that trigger counter-productive policies. These insights enable targeted fixes: a redesigned agent achieves a 9% higher average bitrate in video streaming, and SIA’s online Action-Refinement module improves RAN-slicing reward by 25% without retraining. By making anticipatory DRL transparent and tunable, SIA lowers the barrier to proactive control in next-generation mobile networks.
Compartir
Ficheros
XRL_proactive_agents_author.pdf (705.8Kb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/2009
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!