• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Extension to a fuzzy cognitive maps-based approach for modelling granular time series for forecasting tasks

Compartir
Ficheros
Articulo3Def3.pdf (3.449Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/2001
ISSN: 0950-7051
DOI: 10.1016/j.knosys.2025.114763
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Sánchez, Alejandro; Lillo, Rosa Elvira; Aguilar, Jose
Fecha
2025-12-01
Resumen
Time series modeling for forecasting tasks is a complex problem of great interest to the scientific community. Most forecasting techniques are performed point by point. An alternative is to approximate time series with a higher-level (granular) representation, such that instead of forecasting numerical time series, the objective is to model and forecast at the granularity of the information. In this study, we propose a new approach for granular modeling of time series using Fuzzy Cognitive Maps (FCM). This approach builds on a previous approach that proposes time-segment granulation, which is then fuzzily clustered into clusters. Then, the cluster centroids are used as concepts in the fuzzy cognitive map (FCM) to define a time-series forecasting model. Specifically, we propose three improvements: (i) to the membership function for obtaining the clusters, (ii) to the optimization algorithm for obtaining the FCM, and (iii) to the function it uses to perform the forecast. Tests were carried out with time series of different types, for both granular and numerical forecasts. The experiments carried out demonstrate the robustness of the proposed approach in time series of different characteristics (time series with trends, stationarity, and seasonality). The approach introduced in the paper consistently outperforms the original approach and classical methods such as ARIMA. Overall, our granular approach is very effective at capturing the complexity of non-linear or abruptly changing series, as well as non-stationary and complex patterns.
Compartir
Ficheros
Articulo3Def3.pdf (3.449Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/2001
ISSN: 0950-7051
DOI: 10.1016/j.knosys.2025.114763
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!