• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

USER: User-Side modality representation enhancement for multimodal recommendation

Compartir
Ficheros
USER-clean.pdf (1.349Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1999
ISSN: 0950-7051
DOI: 10.1016/j.knosys.2025.114943
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Fan, Yi; Shi, Donghui; Aguilar, Jose; Zurada, Jozef
Fecha
2025-11-15
Resumen
Multimodal recommendation systems (MMRS) aim to capture user preferences accurately by integrating users’ historical interaction behaviors with the rich multimodal features of recommended items. Prior research has primarily focused on enriching item-side representations by embedding modality features into item vectors. However, user-side modeling has remained underexplored, as existing methods typically treat each modality as a monolithic entity and fail to capture the nuanced structure of user interests within modalities, potentially limiting the model’s ability to represent intricate user preferences. To address this challenge, we propose a novel framework named USER (User-Side modality representation Enhancement for multimodal Recommendation). Specifically, our approach constructs a unified cross-modal preference representation that captures users’ co-perception behaviors across modalities. Building upon this representation, we propose a fine-grained preference mining module that extracts users’ fine-grained preferences and selectively emphasizes the most relevant preference factors for each modality at the token level, thereby refining the unified cross-modal preference representation to be more discriminative and modality-aware. Extensive experiments on three real-world datasets reveal that USER achieves notable improvements, with performance gains 3.24 %, 5.76 %, and 7.08 % across these datasets, respectively, underscoring the effectiveness of USER in enhancing user-side modality representation within multimodal recommendation systems. The source code and data are available at https://github.com/brave-child/USER
Compartir
Ficheros
USER-clean.pdf (1.349Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1999
ISSN: 0950-7051
DOI: 10.1016/j.knosys.2025.114943
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!