• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Error Bounds for the Network Scale-Up Method

Compartir
Ficheros
Error Bounds for the Network Scale-Up Method.pdf (430.4Kb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1969
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Díaz-Aranda, Sergio; Ramirez, Juan Marcos; Daga, Mohit; Champati, Jaya Prakash; Aguilar, Jose; Lillo, Rosa Elvira; Fernández Anta, Antonio
Fecha
2025-08-03
Resumen
Epidemiologists and social scientists have used the Network Scale-Up Method (NSUM) for over thirty years to estimate the size of a hidden sub-population within a social network. This method involves querying a subset of network nodes about the number of their neighbors belonging to the hidden sub-population. In general, NSUM assumes that the social network topology and the hidden sub-population distribution are well-behaved; hence, the NSUM estimate is close to the actual value. However, bounds on NSUM estimation errors have not been analytically proven. This paper provides analytical bounds on the error incurred by the two most popular NSUM estimators. These bounds assume that the queried nodes accurately provide their degree and the number of neighbors belonging to the hidden sub-population. Our key findings are twofold. First, we show that when an adversary designs the network and places the hidden sub-population, then the estimate can be a factor of Ω(√n) off from the real value (in a network with n nodes). Second, we also prove error bounds when the underlying network is randomly generated, showing that a small constant factor can be achieved with high probability using samples of logarithmic size O(log n). We present improved analytical bounds for Erdős-Rényi and Scale-Free networks. Our theoretical analysis is supported by an extensive set of numerical experiments designed to determine the effect of the sample size on the accuracy of the estimates in both synthetic and real networks.
Compartir
Ficheros
Error Bounds for the Network Scale-Up Method.pdf (430.4Kb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1969
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!