Mostrar el registro sencillo del ítem

dc.contributor.authorBasaran, Osman Tugay
dc.contributor.authorVilla, Davide
dc.contributor.authorJohari, Pedram
dc.contributor.authorPolese, Michele
dc.contributor.authorFiandrino, Claudio 
dc.contributor.authorDressler, Falko
dc.contributor.authorMelodia, Tommaso
dc.date.accessioned2025-02-28T12:47:51Z
dc.date.available2025-02-28T12:47:51Z
dc.date.issued2025-05
dc.identifier.urihttps://hdl.handle.net/20.500.12761/1907
dc.description.abstractThe realization of efficient Artificial Intelligence (AI) solutions for the optimization of next-generation Radio Access Network (RAN) relies on the availability of expansive, high-quality datasets that accurately capture nuanced, site-specific conditions. However, obtaining such abundant, domain-specific measurements poses a significant challenge, especially as network complexity and energy efficiency demand surge toward 6G. In response, we introduce GenerativeAI-enabled Digital Twin (Gen-TWIN), a synthetic data generation framework underpinned by a soft- attention LSTM-based generative adversarial network (soft-GAN). Our model augments realistic transmitter and receiver-focused RF datasets by supplementing scarce empirical samples and providing the synthetic data volumes essential for training advanced AI models on RAN. Accuracy results show that soft-GAN provided 19% performance improvement compared to baseline models.es
dc.language.isoenges
dc.titleGen-TWIN: Generative-AI-Enabled Digital Twin for Open Radio Access Networkses
dc.typeconference objectes
dc.conference.date19-22 May 2025es
dc.conference.placeLondon, United Kingdomes
dc.conference.titleIEEE International Conference on Computer Communications *
dc.event.typeworkshopes
dc.pres.typepaperes
dc.type.hasVersionAMes
dc.rights.accessRightsopen accesses
dc.acronymINFOCOM*
dc.rankA**
dc.relation.projectNameRamón y Cajal - Claudioes
dc.description.refereedTRUEes
dc.description.statuspubes


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem