• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gen-TWIN: Generative-AI-Enabled Digital Twin for Open Radio Access Networks

Compartir
Ficheros
gentwin-dspace.pdf (2.211Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1907
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Basaran, Osman Tugay; Villa, Davide; Johari, Pedram; Polese, Michele; Fiandrino, Claudio; Dressler, Falko; Melodia, Tommaso
Fecha
2025-05
Resumen
The realization of efficient Artificial Intelligence (AI) solutions for the optimization of next-generation Radio Access Network (RAN) relies on the availability of expansive, high-quality datasets that accurately capture nuanced, site-specific conditions. However, obtaining such abundant, domain-specific measurements poses a significant challenge, especially as network complexity and energy efficiency demand surge toward 6G. In response, we introduce GenerativeAI-enabled Digital Twin (Gen-TWIN), a synthetic data generation framework underpinned by a soft- attention LSTM-based generative adversarial network (soft-GAN). Our model augments realistic transmitter and receiver-focused RF datasets by supplementing scarce empirical samples and providing the synthetic data volumes essential for training advanced AI models on RAN. Accuracy results show that soft-GAN provided 19% performance improvement compared to baseline models.
Compartir
Ficheros
gentwin-dspace.pdf (2.211Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1907
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!