Mostrar el registro sencillo del ítem

dc.contributor.authorCollet, Alan 
dc.contributor.authorBazco-Nogueras, Antonio 
dc.contributor.authorBanchs, Albert 
dc.contributor.authorFiore, Marco 
dc.date.accessioned2024-10-08T16:00:58Z
dc.date.available2024-10-08T16:00:58Z
dc.date.issued2024-06
dc.identifier.issn1932-4537es
dc.identifier.urihttps://hdl.handle.net/20.500.12761/1863
dc.description.abstractZero-touch network management is one of the most ambitious yet strongly required paradigms for beyond 5G and 6G mobile communication systems. Achieving full automation requires a closed loop that combines (i) network status data collection and processing, (ii) predictive capabilities based on such data to anticipate upcoming needs, and (iii) effective decision making that best addresses such future needs through proper network control and orchestration. Recent seminal works have proposed approaches to jointly implement the last two phases above via a single deep learning model trained on past network status to directly optimize future decisions. This is achieved by designing custom loss functions that directly embed the management task objective. Experiments with real-world measurement data have demonstrated that this strategy leads to substantial performance gains across diverse network management tasks. In this paper, we go one step beyond the loss tailoring schemes above, and introduce a loss meta-learning paradigm that (i) reduces the need for human intervention at model design stage, (ii) eases explainability and transferability of trained deep learning models for network management, and (iii) outperforms custom losses across a range of controlled experiments and practical use cases.es
dc.description.sponsorshipRegional Government of Madrides
dc.description.sponsorshipEuropean Uniones
dc.language.isoenges
dc.publisherIEEEes
dc.titleExplainable and Transferable Loss Meta-Learning for Zero-Touch Anticipatory Network Managementes
dc.typejournal articlees
dc.journal.titleIEEE Transactions on Network and Service Managementes
dc.type.hasVersionAMes
dc.rights.accessRightsopen accesses
dc.volume.number21es
dc.issue.number3es
dc.identifier.doi10.1109/TNSM.2024.3377442es
dc.page.final2823es
dc.page.initial2802es
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/101017109/DAEMONes
dc.relation.projectNameDAEMON (Network intelligence for aDAptive and sElf-Learning MObile Networks)es
dc.relation.projectNameTalent Attractiones
dc.subject.keywordLoss meta-learninges
dc.subject.keywordzero-touch networkinges
dc.subject.keywordanticipatory network managementes
dc.description.refereedTRUEes
dc.description.statuspubes


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem