• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Explainable and Transferable Loss Meta-Learning for Zero-Touch Anticipatory Network Management

Compartir
Ficheros
tnsm2024_collet.pdf (2.085Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1863
ISSN: 1932-4537
DOI: 10.1109/TNSM.2024.3377442
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Collet, Alan; Bazco-Nogueras, Antonio; Banchs, Albert; Fiore, Marco
Fecha
2024-06
Resumen
Zero-touch network management is one of the most ambitious yet strongly required paradigms for beyond 5G and 6G mobile communication systems. Achieving full automation requires a closed loop that combines (i) network status data collection and processing, (ii) predictive capabilities based on such data to anticipate upcoming needs, and (iii) effective decision making that best addresses such future needs through proper network control and orchestration. Recent seminal works have proposed approaches to jointly implement the last two phases above via a single deep learning model trained on past network status to directly optimize future decisions. This is achieved by designing custom loss functions that directly embed the management task objective. Experiments with real-world measurement data have demonstrated that this strategy leads to substantial performance gains across diverse network management tasks. In this paper, we go one step beyond the loss tailoring schemes above, and introduce a loss meta-learning paradigm that (i) reduces the need for human intervention at model design stage, (ii) eases explainability and transferability of trained deep learning models for network management, and (iii) outperforms custom losses across a range of controlled experiments and practical use cases.
Compartir
Ficheros
tnsm2024_collet.pdf (2.085Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1863
ISSN: 1932-4537
DOI: 10.1109/TNSM.2024.3377442
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!