Mostrar el registro sencillo del ítem

dc.contributor.authorSagastabeitia, Gontzal
dc.contributor.authorDoncel, Josu
dc.contributor.authorFernández Anta, Antonio 
dc.contributor.authorAguilar, Jose 
dc.contributor.authorRamirez, Juan Marcos 
dc.date.accessioned2024-10-04T09:34:28Z
dc.date.available2024-10-04T09:34:28Z
dc.date.issued2024-08-01
dc.identifier.urihttps://hdl.handle.net/20.500.12761/1855
dc.description.abstractThe COVID-19 pandemic exposed the importance of research on the spread of epidemic diseases. In the case of COVID-19, official data about infection prevalence was based on PCR and antigen tests reports, which can be unreliable. In our work, we construct prediction models based on Genetic Programming to estimate the SARS-Co V-2 seroprevalence of a given population from multiple estimates of the COVID-19 prevalence (official prevalence data, estimates derived from wastewater data, and estimates obtained from massive surveys with different rules and ML methods). To do that, we propose the use of stacking techniques based on Genetic Programming to obtain Machine Learning Ensemble Methods. Our approach produces more accurate prediction models than conventional stacking techniques based on Linear Regression.es
dc.language.isoenges
dc.titleA Stacking Ensemble Machine Learning Strategy for COVID-19 Seroprevalence Estimations in the USA Based on Genetic Programminges
dc.typeconference objectes
dc.conference.date1-4 July 2024es
dc.conference.placeYokohama, Japanes
dc.conference.titleIEEE Congress on Evolutionary Computation *
dc.event.typeconferencees
dc.pres.typepaperes
dc.type.hasVersionAMes
dc.rights.accessRightsembargoed accesses
dc.acronymCEC*
dc.page.final10es
dc.page.initial1es
dc.rankB*
dc.relation.projectIDTED2021-131264B-I0es
dc.relation.projectIDMCIN/AEI/10.13039/501100011033es
dc.relation.projectNameSocialProbinges
dc.relation.projectNameNextGenerationEU”/PRTRes
dc.description.refereedTRUEes
dc.description.statuspubes


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem