• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Stacking Ensemble Machine Learning Strategy for COVID-19 Seroprevalence Estimations in the USA Based on Genetic Programming

Compartir
Ficheros
ArticuloGontzalWCCI2024-7.pdf (1.103Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1855
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Sagastabeitia, Gontzal; Doncel, Josu; Fernández Anta, Antonio; Aguilar, Jose; Ramirez, Juan Marcos
Fecha
2024-08-01
Resumen
The COVID-19 pandemic exposed the importance of research on the spread of epidemic diseases. In the case of COVID-19, official data about infection prevalence was based on PCR and antigen tests reports, which can be unreliable. In our work, we construct prediction models based on Genetic Programming to estimate the SARS-Co V-2 seroprevalence of a given population from multiple estimates of the COVID-19 prevalence (official prevalence data, estimates derived from wastewater data, and estimates obtained from massive surveys with different rules and ML methods). To do that, we propose the use of stacking techniques based on Genetic Programming to obtain Machine Learning Ensemble Methods. Our approach produces more accurate prediction models than conventional stacking techniques based on Linear Regression.
Compartir
Ficheros
ArticuloGontzalWCCI2024-7.pdf (1.103Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1855
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!