• español
    • English
  • Login
  • English 
    • español
    • English
  • Publication Types
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
View Item 
  •   IMDEA Networks Home
  • View Item
  •   IMDEA Networks Home
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dissecting Advanced Time Series Forecasting Models with AIChronoLens

Share
Files
xai-aichronolens.pdf (514.4Kb)
Identifiers
URI: https://hdl.handle.net/20.500.12761/1798
Metadata
Show full item record
Author(s)
Fernández, Pablo; Fiandrino, Claudio; Fiore, Marco; Widmer, Joerg
Date
2024-05
Abstract
Mobile traffic forecasting is instrumental in efficiently managing network resources. In this poster paper, we dissect the behavior of advanced time series forecasting techniques, namely DLinear and PatchTST, when applied to the problems of predicting future mobile traffic volumes. Being black-box models hard to interpret, we ground our analysis on EXplainable Artificial Intelligence (XAI) by using AIChronoLens, a new tool that links legacy XAI explanations with the temporal properties of the input sequences. We find that the DLinear significantly improves the prediction accuracy over PatchTST and state-of-the-art techniques like Long-Short Term Memory (LSTM). The analysis with AIChronoLens shows that, unlike PatchTST, DLinear is capable of focusing its prediction decisions on a few key samples of the input sequences, which makes it possible for DLinear to match the ground truth closely.
Share
Files
xai-aichronolens.pdf (514.4Kb)
Identifiers
URI: https://hdl.handle.net/20.500.12761/1798
Metadata
Show full item record

Browse

All of IMDEA NetworksBy Issue DateAuthorsTitlesKeywordsTypes of content

My Account

Login

Statistics

View Usage Statistics

Dissemination

emailContact person Directory wifi Eduroam rss_feed News
IMDEA initiative About IMDEA Networks Organizational structure Annual reports Transparency
Follow us in:
Community of Madrid

EUROPEAN UNION

European Social Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

European Structural and Investment Fund

© 2021 IMDEA Networks. | Accesibility declaration | Privacy Policy | Disclaimer | Cookie policy - We value your privacy: this site uses no cookies!