Mostrar el registro sencillo del ítem

dc.contributor.authorScalingi, Alessio 
dc.contributor.authorD'Oro, Salvatore
dc.contributor.authorRestuccia, Francesco
dc.contributor.authorMelodia, Tommaso
dc.contributor.authorGiustiniano, Domenico 
dc.date.accessioned2024-02-06T10:52:00Z
dc.date.available2024-02-06T10:52:00Z
dc.date.issued2024-05-19
dc.identifier.urihttps://hdl.handle.net/20.500.12761/1792
dc.description.abstractFifth generation (5G) and beyond cellular networks are vulnerable to security threats, primarily due to the lack of integrity protection in the Radio Resource Control (RRC) layer. In order to address this problem, we propose a real- time anomaly detection framework that leverages the concept of distributed applications in 5G Open RAN networks. Specifically, we identify Physical Layer (PHY) features that can generate a reliable fingerprint, infer in a novel way the time of arrival of uplink packets lacking integrity protection, and handle cross- layer features. By identifying legitimate message sources and detecting suspicious activities through an Artificial Intelligence (AI) design, we demonstrate that Open RAN-based applications that run at the edge can be designed to provide additional security to the network. Our solution is first validated in extensive emulation environments achieving over 85% accuracy in predicting potential attacks on unseen test scenarios. We then integrate our approach into a real-world prototype with a large channel emulator to assess its real-time performance and costs. Our solution meets the low-latency real-time constraints of 2 ms, making it well-suited for real-world deployments.es
dc.description.sponsorshipMinistry of Economic Affairs and Digital Transformation and the European Union-NextGenerationEUes
dc.description.sponsorshipU.S. National Science Foundationes
dc.description.sponsorshipAir Force Office of Scientific Researches
dc.description.sponsorshipOffice of Naval Researches
dc.language.isoenges
dc.titleDet-RAN: Data-Driven Cross-Layer Real-Time Attack Detection in 5G Open RANses
dc.typeconference objectes
dc.conference.date20-23 May 2024es
dc.conference.placeVancouver, Canadaes
dc.conference.titleIEEE International Conference on Computer Communications *
dc.event.typeconferencees
dc.pres.typepaperes
dc.type.hasVersionVoRes
dc.rights.accessRightsopen accesses
dc.acronymINFOCOM*
dc.page.final10es
dc.page.initial1es
dc.rankA**
dc.relation.projectNameMAP-6G (Machine Learning-based Privacy Preserving Analytics for 6G Mobile Networks)es
dc.subject.keyword5Ges
dc.subject.keywordORANes
dc.subject.keywordAttack Detectiones
dc.subject.keywordAIes
dc.subject.keywordCross-layeres
dc.description.refereedTRUEes
dc.description.statusinpresses


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem