• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Det-RAN: Data-Driven Cross-Layer Real-Time Attack Detection in 5G Open RANs

Compartir
Ficheros
Pre-print version of the accepted paper (2.114Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1792
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Scalingi, Alessio; D'Oro, Salvatore; Restuccia, Francesco; Melodia, Tommaso; Giustiniano, Domenico
Fecha
2024-05-19
Resumen
Fifth generation (5G) and beyond cellular networks are vulnerable to security threats, primarily due to the lack of integrity protection in the Radio Resource Control (RRC) layer. In order to address this problem, we propose a real- time anomaly detection framework that leverages the concept of distributed applications in 5G Open RAN networks. Specifically, we identify Physical Layer (PHY) features that can generate a reliable fingerprint, infer in a novel way the time of arrival of uplink packets lacking integrity protection, and handle cross- layer features. By identifying legitimate message sources and detecting suspicious activities through an Artificial Intelligence (AI) design, we demonstrate that Open RAN-based applications that run at the edge can be designed to provide additional security to the network. Our solution is first validated in extensive emulation environments achieving over 85% accuracy in predicting potential attacks on unseen test scenarios. We then integrate our approach into a real-world prototype with a large channel emulator to assess its real-time performance and costs. Our solution meets the low-latency real-time constraints of 2 ms, making it well-suited for real-world deployments.
Compartir
Ficheros
Pre-print version of the accepted paper (2.114Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1792
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!