• español
    • English
  • Login
  • English 
    • español
    • English
  • Publication Types
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
View Item 
  •   IMDEA Networks Home
  • View Item
  •   IMDEA Networks Home
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mean-Field Multi-Agent Contextual Bandit for Energy-Efficient Resource Allocation in vRANs

Share
Files
Author Version of Accepted Paper (591.9Kb)
Identifiers
URI: https://hdl.handle.net/20.500.12761/1785
Metadata
Show full item record
Author(s)
Ayala-Romero, Jose A.; Lo Schiavo, Leonardo; Garcia-Saavedra, Andres; Costa-Perez, Xavier
Date
2024-05-20
Abstract
Radio Access Network (RAN) virtualization, key for new-generation mobile networks, requires Hardware Accelerators (HAs) that swiftly process wireless signals from Base Stations (BSs) to meet stringent reliability targets. However, HAs are expensive and energy-hungry, which increases costs and has serious environmental implications. To address this problem, we gather data from our experimental platform and compare the performance and energy consumption of a HA (NVIDIA GPU V100) vs. a CPU (Intel Xeon Gold 6240R, 16 cores) for energy-friendly software processing. Based on the insights obtained from this data, we devise a strategy to offload workloads to HAs opportunistically to save energy while preserving reliability. This offloading strategy, however, needs to be configured in near-real-time for every BS sharing common computational resources. This renders a challenging multi-agent collaborative problem in which the number of involved agents (BSs) can be arbitrarily large and can change over time. Thus, we propose an efficient multi-agent contextual bandit algorithm called ECORAN, which applies concepts from mean field theory to be fully scalable. Using a real platform and traces from a production mobile network, we show that ECORAN can provide up to 40% energy savings with respect to the approach used today by the industry.
Share
Files
Author Version of Accepted Paper (591.9Kb)
Identifiers
URI: https://hdl.handle.net/20.500.12761/1785
Metadata
Show full item record

Browse

All of IMDEA NetworksBy Issue DateAuthorsTitlesKeywordsTypes of content

My Account

Login

Statistics

View Usage Statistics

Dissemination

emailContact person Directory wifi Eduroam rss_feed News
IMDEA initiative About IMDEA Networks Organizational structure Annual reports Transparency
Follow us in:
Community of Madrid

EUROPEAN UNION

European Social Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

European Structural and Investment Fund

© 2021 IMDEA Networks. | Accesibility declaration | Privacy Policy | Disclaimer | Cookie policy - We value your privacy: this site uses no cookies!