• español
    • English
  • Login
  • English 
    • español
    • English
  • Publication Types
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
View Item 
  •   IMDEA Networks Home
  • View Item
  •   IMDEA Networks Home
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

YinYangRAN: Resource Multiplexing in GPU-Accelerated Virtualized RANs

Share
Files
Author Version of Accepted Paper (737.5Kb)
Identifiers
URI: https://hdl.handle.net/20.500.12761/1784
Metadata
Show full item record
Author(s)
Lo Schiavo, Leonardo; Ayala-Romero, Jose A.; Garcia-Saavedra, Andres; Fiore, Marco; Costa-Perez, Xavier
Date
2024-05-20
Abstract
RAN virtualization is revolutionizing the telco industry, enabling 5G Distributed Units to run using general-purpose platforms equipped with Hardware Accelerators (HAs). Recently, GPUs have been proposed as HAs, hinging on their unique capability to execute 5G PHY operations efficiently while also processing Machine Learning (ML) workloads. While this ambivalence makes GPUs attractive for cost-effective deployments, we experimentally demonstrate that multiplexing 5G and ML workloads in GPUs is in fact challenging, and that using conventional GPU-sharing methods can severely disrupt 5G operations. We then introduce YinYangRAN, an innovative O-RAN-compliant solution that supervises GPU-based HAs so as to ensure reliability in the 5G processing pipeline while maximizing the throughput of concurrent ML services. YinYangRAN performs GPU resource allocation decisions via a computationally-efficient approximate dynamic programming technique, which is informed by a neural network trained on real-world measurements. Using workloads collected in real RANs, we demonstrate that YinYangRAN can achieve over 50\% higher 5G processing reliability than conventional GPU sharing models with minimal impact on co-located ML workloads. To our knowledge, this is the first work identifying and addressing the complex problem of HA management in emerging GPU-accelerated vRANs, and represents a promising step towards multiplexing PHY and ML workloads in mobile networks.
Share
Files
Author Version of Accepted Paper (737.5Kb)
Identifiers
URI: https://hdl.handle.net/20.500.12761/1784
Metadata
Show full item record

Browse

All of IMDEA NetworksBy Issue DateAuthorsTitlesKeywordsTypes of content

My Account

Login

Statistics

View Usage Statistics

Dissemination

emailContact person Directory wifi Eduroam rss_feed News
IMDEA initiative About IMDEA Networks Organizational structure Annual reports Transparency
Follow us in:
Community of Madrid

EUROPEAN UNION

European Social Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

European Structural and Investment Fund

© 2021 IMDEA Networks. | Accesibility declaration | Privacy Policy | Disclaimer | Cookie policy - We value your privacy: this site uses no cookies!