• español
    • English
  • Login
  • English 
    • español
    • English
  • Publication Types
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
View Item 
  •   IMDEA Networks Home
  • View Item
  •   IMDEA Networks Home
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Jewel: Resource-Efficient Joint Packet and Flow Level Inference in Programmable Switches

Share
Files
jewel_postprint.pdf (1.928Mb)
Identifiers
URI: https://hdl.handle.net/20.500.12761/1777
Metadata
Show full item record
Author(s)
Akem, Aristide Tanyi-Jong; Bütün, Beyza; Gucciardo, Michele; Fiore, Marco
Date
2024-05-20
Abstract
Embedding machine learning (ML) models in programmable switches realizes the vision of high-throughput and low-latency inference at line rate. Recent works have made breakthroughs in embedding Random Forest (RF) models in switches for either packet-level inference or flow-level inference. The former relies on simple features from packet headers that are simple to implement but limit accuracy in challenging use cases; the latter exploits richer flow features to improve accuracy, but leaves early packets in each flow unclassified. We propose Jewel, an in-switch ML model based on a fully joint packet- and flow-level design, which takes the best of both worlds by classifying early flow packets individually and shifting to flow-level inference when possible. Our proposal involves (i) a single RF model trained to classify both packets and flows, and (ii) hardware-aware model selection and training techniques for resource footprint minimization. We implement Jewel in P4 and deploy it in a testbed with Intel Tofino switches, where we run extensive experiments with a variety of real-world use cases. Results reveal how our solution outperforms four state-of-the-art benchmarks, with accuracy gains in the 2.0%–5.3% range.
Share
Files
jewel_postprint.pdf (1.928Mb)
Identifiers
URI: https://hdl.handle.net/20.500.12761/1777
Metadata
Show full item record

Browse

All of IMDEA NetworksBy Issue DateAuthorsTitlesKeywordsTypes of content

My Account

Login

Statistics

View Usage Statistics

Dissemination

emailContact person Directory wifi Eduroam rss_feed News
IMDEA initiative About IMDEA Networks Organizational structure Annual reports Transparency
Follow us in:
Community of Madrid

EUROPEAN UNION

European Social Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

European Structural and Investment Fund

© 2021 IMDEA Networks. | Accesibility declaration | Privacy Policy | Disclaimer | Cookie policy - We value your privacy: this site uses no cookies!