• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Jewel: Resource-Efficient Joint Packet and Flow Level Inference in Programmable Switches

Compartir
Ficheros
jewel_postprint.pdf (1.928Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1777
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Akem, Aristide Tanyi-Jong; Bütün, Beyza; Gucciardo, Michele; Fiore, Marco
Fecha
2024-05-20
Resumen
Embedding machine learning (ML) models in programmable switches realizes the vision of high-throughput and low-latency inference at line rate. Recent works have made breakthroughs in embedding Random Forest (RF) models in switches for either packet-level inference or flow-level inference. The former relies on simple features from packet headers that are simple to implement but limit accuracy in challenging use cases; the latter exploits richer flow features to improve accuracy, but leaves early packets in each flow unclassified. We propose Jewel, an in-switch ML model based on a fully joint packet- and flow-level design, which takes the best of both worlds by classifying early flow packets individually and shifting to flow-level inference when possible. Our proposal involves (i) a single RF model trained to classify both packets and flows, and (ii) hardware-aware model selection and training techniques for resource footprint minimization. We implement Jewel in P4 and deploy it in a testbed with Intel Tofino switches, where we run extensive experiments with a variety of real-world use cases. Results reveal how our solution outperforms four state-of-the-art benchmarks, with accuracy gains in the 2.0%–5.3% range.
Compartir
Ficheros
jewel_postprint.pdf (1.928Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1777
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!