Mostrar el registro sencillo del ítem

dc.contributor.authorAlcalá-Marín, Sergi 
dc.contributor.authorBazco-Nogueras, Antonio 
dc.contributor.authorBanchs, Albert 
dc.contributor.authorFiore, Marco 
dc.date.accessioned2023-09-11T15:40:23Z
dc.date.available2023-09-11T15:40:23Z
dc.date.issued2023-10-23
dc.identifier.citation[1] Sagar Arora and Adlen Ksentini. 2021. Dynamic Resource Allocation and Placement of Cloud Native Network Services. In <i>IEEE Int. Conf. Commun. (ICC)</i>. 1–6. [2] Dario Bega et al. 2019. DeepCog: Cognitive Network Management in Sliced 5G Networks with Deep Learning. In <i>Proc. of IEEE INFOCOM</i>. 1–9. [3] Dario Bega, Marco Gramaglia, Albert Banchs, Vincenzo Sciancalepore, Konstantinos Samdanis, and Xavier Costa-Perez. 2017. Optimising 5G infrastructure markets: The business of network slicing. In <i>Proc. of IEEE INFOCOM</i>. 1–9. [4] Walid Ben-Ameur, Lorela Cano, and Tijani Chahed. 2021. A framework for joint admission control, resource allocation and pricing for network slicing in 5G. In <i>2021 IEEE Global Communications Conf. (GLOBECOM)</i>. 1–6. [5] Mans Burman and Magnus Gall. 2022. Ericsson and Red Hat empower service providers to build multi-vendor networks. [6] Pablo Caballero, Albert Banchs, Gustavo de Veciana, and Xavier Costa-Pérez. 2017. Multi-Tenant Radio Access Network Slicing: Statistical Multiplexing of Spatial Loads. <i>IEEE/ACM Transactions on Networking</i> 25, 5 (2017), 3044–3058. [7] Pablo Caballero, Albert Banchs, Gustavo de Veciana, Xavier Costa-Pérez, and Arturo Azcorra. 2018. Network Slicing for Guaranteed Rate Services: Admission Control and Resource Allocation Games. <i>IEEE Transactions on Wireless Communications</i> 17, 10 (2018), 6419–6432. [8] Sajjad Gholamipour, Behzad Akbari, Nader Mokari, Mohammad Mahdi Tajiki, and Eduard Axel Jorswieck. 2021. Online Admission Control and Resource Allocation in Network Slicing under Demand Uncertainties. [9] Dimitris Giannopoulos, Panagiotis Papaioannou, Christos Tranoris, and Spyros Denazis. 2021. Monitoring as a Service over a 5G Network Slice. In <i>Joint European Conf. on Networks and Commun. & 6G Summit (EuCNC/6G Summit)</i>. 329–334. [10] Bin Han, Vincenzo Sciancalepore, Di Feng, Xavier Costa-Perez, and Hans D. Schotten. 2019. A Utility-Driven Multi-Queue Admission Control Solution for Network Slicing. In <i>Proc. of IEEE INFOCOM</i>. 55–63. [11] Yuxiu Hua, Rongpeng Li, Zhifeng Zhao, Xianfu Chen, and Honggang Zhang. 2020. GAN-Powered Deep Distributional Reinforcement Learning for Resource Management in Network Slicing. <i>IEEE J. Selected Areas in Communications</i> 38, 2 (2020), 334–349. [12] Johanna Andrea Hurtado Sánchez, Katherine Casilimas, and Oscar Mauricio Caicedo Rendon. 2022. Deep Reinforcement Learning for Resource Management on Network Slicing: A Survey. <i>Sensors</i> 22, 8 (2022). 1424-8220 [13] Jaehoon Koo, Veena B. Mendiratta, Muntasir Raihan Rahman, and Anwar Walid. 2019. Deep Reinforcement Learning for Network Slicing with Heterogeneous Resource Requirements and Time Varying Traffic Dynamics. In <i>Int. Conf. on Network and Service Management (CNSM)</i>. 1–5. [14] Qiang Liu, Tao Han, and Ephraim Moges. 2020. EdgeSlice: Slicing Wireless Edge Computing Network with Decentralized Deep Reinforcement Learning. In <i>IEEE Int. Conf. on Distributed Computing Systems (ICDCS)</i>. 234–244. [15] Minghui Liwang, Xianbin Wang, and Ruitao Chen. 2022. Computing Resource Provisioning at the Edge: An Overbooking-Enabled Trading Paradigm. <i>IEEE Wireless Commun.</i> 29, 5 (2022), 68–76. <a href="https://doi.org/10.1109/MWC.104.2100380">https://doi.org/10.1109/MWC.104.2100380</a> [16] Leonardo Lo Schiavo, Marco Fiore, Marco Gramaglia, Albert Banchs, and Xavier Costa-Perez. 2022. Forecasting for Network Management with Joint Statistical Modelling and Machine Learning. (2022). [17] Ziyue Luo, Chuan Wu, Zongpeng Li, and Wei Zhou. 2019. Scaling Geo-Distributed Network Function Chains: A Prediction and Learning Framework. <i>IEEE J. Selected Areas in Communications</i> 37, 8 (2019), 1838–1850. [18] Quang-Trung Luu, Sylvaine Kerboeuf, and Michel Kieffer. 2021. Uncertainty-Aware Resource Provisioning for Network Slicing. <i>IEEE Transactions on Network and Service Management</i> 18, 1 (2021), 79–93. [19] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. 2020. The M4 Competition: 100,000 time series and 61 forecasting methods. <i>Int. Journal of Forecasting</i> 36, 1 (2020), 54 – 74. 0169-2070 <a href="https://doi.org/10.1016/j.ijforecast.2019.04.014">https://doi.org/10.1016/j.ijforecast.2019.04.014</a> [20] Cristina Marquez, Marco Gramaglia, Marco Fiore, Albert Banchs, and Xavier Costa-Pérez. 2019. Resource Sharing Efficiency in Network Slicing. <i>IEEE Transactions on Network and Service Management</i> 16, 3 (2019), 909–923. [21] S. Martello. 1990. Knapsack Problems: Algorithms and Computer Implementations. <i>Wiley-Interscience series in discrete mathematics and optimiza tion</i> (1990). [22] S. Martello and P. Toth. 1990. <i>Knapsack Problems: Algorithms and Computer Implementations</i>. Wiley. lc90012279 <a href="https://books.google.es/books?id=0dhQAAAAMAAJ">https://books.google.es/books?id=0dhQAAAAMAAJ</a> [23] Felix Patzelt. 2022. Colored Noise. <a href="https://github.com/felixpatzelt/colorednoise">https://github.com/felixpatzelt/colorednoise</a>. [24] Adrián Pino, Pouria Khodashenas, Xavier Hesselbach, Estefanía Coronado, and Shuaib Siddiqui. 2021. Validation and Benchmarking of CNFs in OSM for pure Cloud Native applications in 5G and beyond. In <i>2021 Int. Conf. on Computer Communications and Networks (ICCCN)</i>. 1–9. [25] JE Rachid and J Erfanian. 2015. NGMN 5G Initiative White Paper. [26] Josep Xavier Salvat, Lanfranco Zanzi, Andres Garcia-Saavedra, Vincenzo Sciancalepore, and Xavier Costa-Perez. 2018. Overbooking Network Slices through Yield-Driven End-to-End Orchestration. In <i>Proc. Int. Conf. Emerging Networking EXperiments and Technologies (CoNEXT)</i>. 353–365. [27] Shivani Saxena and Krishna M. Sivalingam. 2022. Slice admission control using overbooking for enhancing provider revenue in 5G Networks. In <i>NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium</i>. 1–7. [28] Conor Sexton, Nicola Marchetti, and Luiz A. DaSilva. 2020. On Provisioning Slices and Overbooking Resources in Service Tailored Networks of the Future. <i>IEEE/ACM Transactions on Networking</i> 28, 5 (2020), 2106–2119. [29] Syed Danial Ali Shah, Mark A. Gregory, and Shuo Li. 2021. Cloud-Native Network Slicing Using Software Defined Networking Based Multi-Access Edge Computing: A Survey. <i>IEEE Access</i> 9 (2021), 10903–10924. [30] Kalyan T. Talluri and Garrett Van Ryzin. 2004. <i>The theory and practice of revenue management</i>. Vol. 1. Springer. [31] Zhiqing Tang, Fuming Zhang, Xiaojie Zhou, Weijia Jia, and Wei Zhao. 2022. Pricing Model for Dynamic Resource Overbooking in Edge Computing. <i>IEEE Transactions on Cloud Computing</i> (2022). [32] The Linux Foundation. 2022. The Linux Foundation and Google Cloud Launch Nephio to Enable and Simplify Cloud Native Automation of Telecom Network Functions. Consulted on March 10th 2023. [33] Denis Tikunov and Toshikazu Nishimura. 2007. Traffic prediction for mobile network using Holt-Winter’s exponential smoothing. In <i>Int. Conf. on Software, Telecommunications and Computer Networks</i>. IEEE, 1–5. [34] Sebastian Troia, Rodolfo Alvizu, and Guido Maier. 2019. Reinforcement Learning for Service Function Chain Reconfiguration in NFV-SDN Metro-Core Optical Networks. <i>IEEE Access</i> 7 (2019), 167944–167957. [35] Nguyen Van Huynh, Dinh Thai Hoang, Diep N. Nguyen, and Eryk Dutkiewicz. 2019. Optimal and Fast Real-Time Resource Slicing With Deep Dueling Neural Networks. <i>IEEE J. Selected Areas in Communications</i> 37, 6 (2019), 1455–1470. [36] Lanfranco Zanzi, Josep Xavier Salvat, Vincenzo Sciancalepore, Andres Garcia Saavedra, and Xavier Costa-Perez. 2018. Overbooking Network Slices End-to-End: Implementation and Demonstration. In <i>Proc. of ACM SIGCOMM</i>. 144–146. [37] Jiaxiao Zheng, Pablo Caballero, Gustavo de Veciana, Seung Jun Baek, and Albert Banchs. 2018. Statistical Multiplexing and Traffic Shaping Games for Network Slicing. <i>IEEE/ACM Transactions on Networking</i> 26, 6 (2018), 2528–2541. <a href="https://doi.org/10.1109/TNET.2018.2870184">https://doi.org/10.1109/TNET.2018.2870184</a> [38] Xuan Zhou, Rongpeng Li, Tao Chen, and Honggang Zhang. 2016. Network slicing as a service: enabling enterprises' own software-defined cellular networks. <i>IEEE Communications Magazine</i> 54, 7 (2016), 146–153.es
dc.identifier.urihttps://hdl.handle.net/20.500.12761/1739
dc.description.abstractCloud-native mobile networks pave the road for Network Slicing as a Service (NSaaS), where slice overbooking is a promising management strategy to maximize the revenues from admitted slices by exploiting the fact they are unlikely to fully utilize their reserved resources concurrently. While seminal works have shown the potential of overbooking for NSaaS in simplistic cases, its realization is challenging in practical scenarios with realistic slice demands, where its actual performance remains to be tested. In this paper, we propose kaNSaaS, a complete solution for NSaaS management with slice overbooking that combines deep learning and classical optimization to jointly solve the key tasks of admission control and resource allocation. Experiments with large-scale measurement data of actual tenant demands show that kaNSaaS increases the network operator profits by 300% with respect to NSaaS management strategies that do not employ overbooking, while outperforming by more than 20% state-of-the-art overbooking-based approaches.es
dc.description.sponsorshipDAEMONes
dc.description.sponsorshipUNICO 5G I+D 6G-CLARIONes
dc.description.sponsorshipUNICO 5G I+D AEON ZEROes
dc.language.isoenges
dc.titlekaNSaaS: Combining Deep Learning and Optimization for Practical Overbooking of Network Sliceses
dc.typeconference objectes
dc.conference.date23-26 October 2023es
dc.conference.placeWashington D.C, USAes
dc.conference.titleACM International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing*
dc.event.typeconferencees
dc.pres.typepaperes
dc.rights.accessRightsopen accesses
dc.relation.projectID101017109es
dc.relation.projectNameDAEMONes
dc.relation.projectNameUNICO 5G I+D 6G-CLARIONes
dc.relation.projectNameUNICO 5G I+D AEON ZEROes
dc.subject.keywordDeep Learninges
dc.subject.keyword5Ges
dc.subject.keywordNetwork Slicinges
dc.subject.keywordOptimizationes
dc.subject.keywordResource Allocationes
dc.subject.keywordAdmission Controles
dc.subject.keywordkaNSaaSes
dc.subject.keywordOverbookinges
dc.description.refereedTRUEes
dc.description.statuspubes


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem