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ABSTRACT
Cloud-native mobile networks pave the road for Network Slicing

as a Service (NSaaS), where slice overbooking is a promising man-

agement strategy to maximize the revenues from admitted slices by

exploiting the fact they are unlikely to fully utilize their reserved

resources concurrently. While seminal works have shown the po-

tential of overbooking for NSaaS in simplistic cases, its realization

is challenging in practical scenarios with realistic slice demands,

where its actual performance remains to be tested. In this paper,

we propose kaNSaaS, a complete solution for NSaaS management

with slice overbooking that combines deep learning and classical

optimization to jointly solve the key tasks of admission control and

resource allocation. Experiments with large-scale measurement

data of actual tenant demands show that kaNSaaS increases the net-
work operator profits by 300% with respect to NSaaS management

strategies that do not employ overbooking, while outperforming

by more than 20% state-of-the-art overbooking-based approaches.
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1 INTRODUCTION
Softwarization has marked the evolution of mobile network in-

frastructures over the past decade, and Mobile Network Operators

(MNOs) are today experimenting with proofs-of-concept and early

deployments of cloud-native network technologies, supported by

major cloud service providers [5, 32]. The dramatic increase in flex-

ibility granted by production-grade cloud-native mobile network

architectures will finally open new and long-envisioned business

opportunities for MNOs. One of the most promising is network slic-

ing, which abstracts a single physical infrastructure into multiple

logical instances, or slices [25]. Each network slice is dedicated to

specific traffic flows (e.g., the video streaming demand generated

by mobile clients of a given platform) and is configured so as to

provide strong guarantees that the Service Level Agreement (SLA)

for such traffic is met (e.g., in terms of latency, throughput, or jitter).

Cloud-native NSaaS management. Cloud-native network ar-

chitectures offer a natural support to network slicing operations [29]:

they allow assigning dedicated resources (e.g., spectrum, transport

capacity, compute or memory resources, depending on the target

network domain) to each slice [1], configuring dynamically the

Virtual Network Functions (VNF) according to the SLA of each

slice [24], and monitoring the fulfillment of such SLA [9]. As a re-

sult, the cloudification of networks implicitly paves the way to the

realization of Network Slicing as a Service (NSaaS) models. Here,

MNOs deliver slices to vertical customers, i.e., Service Providers
(SPs) who are able to configure their assigned slices up so as to best

run their applications [38]. The NSaaS model ultimately creates a

new marketplace that allows operators to maximize their revenue

through an appropriate slice brokering [3].

Network slicing has drawn significant attention from the re-

search community in the past years, and studies have tackled many

challenges in the practical implementation of this paradigm. Among

those, admission control and resource allocation are central tasks:

a great portion of the potential advantage that NSaaS can bring to

MNOs depends on correct choices on whether to accept a slice, and,

if so, with what dedicated resources. As we will discuss in detail in

Sec. 2, prior works have addressed both these problems, possibly in

a joint fashion. Yet, the vast majority of the studies in the literature

overlooks an important degree of freedom for the operator, i.e.,
its flexibility in allocating resources that are not necessarily those

specified by the SLA, as explained next.
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Figure 1: Overbooking in NSaaS, with notation. (a) Real tra�c generated by one mobile service, requested slice capacity by the
associated service provider (SP) at every slice brokering interval ZSLA, and actual capacity allocated by the Mobile Network
Operator (MNO) thanks to a fast orchestration at periodicity ZRA and a �ne-tuning of allocated resources closer to the actual
service demand. We highlight the resource savings with respect to a blind allocation of the exact capacity requested by the
SP, along with the remaining gain margin with respect to a perfect allocation matching the actual tra�c. (b) Example of how
overbooking improves the MNO NSaaS operation in a simple case with two slices. We show the real tra�c and requested
resources of the �rst slice (solid brown lines) and those of both slices (solid black lines). As per plot (a), the MNO can perform a
faster and more accurate anticipatory allocation of resources to both slices (dotted line). This leads to resource savings (blue
areas) with respect to allocating all the SP requests when those are below the capacity limit I ¹ l º

r . More importantly, it allows
accepting both slices even if their aggregated requests exceed the MNO available capacity (green areas). Overbooking errors
may however lead to SLA violations, when the actual demand of the accepted slices cannot be served (red area).

Overbooking network slices. Cloud-native technologies al-
low the MNO to orchestrate resources and VNFs at much faster
timescales than those of NSaaS brokering. Thus, while the network
slice tenant requests resources for its peak consumption over long
reservation periods, the actual allocation and re-con�guration of
slice-dedicated resources can be performed at a �ner time granu-
larity. In addition, the operator has in-depth visibility of the actual
infrastructure utilization, and can hence allocate resources based
on the real resource occupancy generated by the service demands,
beyond the capacity requests issued by the vertical tenants. These
technical advantages, illustrated in Fig. 1a, open the door to large
slice multiplexing gains, letting theMNOmake a more e�cient use
of its resources [20] and ultimately increasing its pro�t.

Speci�cally, reducing the amount of capacity needed to serve
each slice can free up space for accommodating more requests, as
exempli�ed in Fig. 1b. In other words, theMNO can sell more ca-
pacity than it has deployed, considering that vertical customers will
not use all the capacity they requested all the time. The strategy
maps tooverbooking, a well-known revenue management approach
used to maximize pro�t in scenarios where limited resources must
be reserved based on stochastic requests [30]. In the case of over-
booking for NSaaS, errors in admitting excess slices come at the
cost of monetary fees for violating the SLA with one or multiple
tenants during some fraction of time, as also shown in Fig. 1b. Over-
booking has been recently considered as a way to increase NSaaS
revenues for theMNO, with promising results [26� 28]. Yet, as later
detailed in Sec. 2, prior studies are few, have technical limitations,
and none has demonstrated practical solutions with real-world traf-
�c demands of vertical customers collected in actual operational
networks. The latter aspect is especially critical now that cloud-
native networks are bringing slicing closer to deployment, and there
is a clear need to understand how overbooking would perform in
production systems.

Contributions. In this paper, we make the following contribu-
tions towards an e�cient realization of NSaaS overbooking.

� We design and implementkaNSaaS, a novel complete solu-
tion for overbooking-awareNSaaS, which solves the joint
problem of slice admission control and anticipatory resource
allocation by combining (8) deep-learning slice demand fore-
casting and (88) optimization-based decision-making. Our
formulation is modular and can accommodate any SLA ex-
pressions and Operating Expenses (OPEX) cost de�nitions.

� We provide a �rst assessment of overbooking gains in pres-
ence of real-world demands generated by multiple service
providers, as measured in a metropolitan-scale production
network. We investigate advantages for theMNOin terms of
net pro�t along diverse dimensions that include the resource
orchestration �exibility, the cost of allocated resources to
slices, or the overdimensioning strategy of the operator. Ours
is the very �rst evaluation of overbooking for NSaaS in pres-
ence of realistic slice requests, which unveils the actual ad-
vantages that the technology may bring in practical settings.

� We prove thatkaNSaaSincreases theMNO pro�ts by 300%
with respect to legacy NSaaS management strategies, and
above20% over state-of-the-art slice overbooking.

� We show that results stay consistent under original synthetic
slice demands that we generate to mimic the measurement
data. While we cannot disclose the latter due to con�den-
tiality agreements, we release1 the synthetic tra�c together
with our implementation ofkaNSaaS, so as to foster the re-
producibility of our study and support further investigations.

Overall, our work contributes to advance the state of the art
in NSaaS management, and sheds light on the actual gains that
overbooking can bring to the MNO in production settings.

1Code and data are available at https://github.com/nds-group/kansaas.
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2 RELATED WORK
Most studies on network slicing have investigated the key manage-
ment functionalities of admission control of slice requests [10, 18]
and allocation of resources to individual slices [11, 35] in isola-
tion. Previous works that jointly addressed the two tasks [4, 7, 8]
have overlook the important trade-o�s entailed by: (8) the added
revenues of accepting slices that request capacity beyond that avail-
able, while not using it all the time; and, (88) the potential cost
of violating SLAs in the moments when the actual demand of all
accepted slices exceeds the total capacity.

Overbooking speci�cally tackles the trade-o� above. Its appli-
cation to the communications �eld is very recent, with a focus
on pricing and billing strategies [31] or resource trading [15] in
network edge clouds. When considering the speci�c context of net-
work slicing, overbooking must not be confused with the simpler
problem of slice multiplexing. For instance, there exist data-driven
analyses of the multiplexing e�ciency of network slices [20] or
works that propose optimized resource allocation to multiplexed
network slices [6, 37]. However, plain multiplexing does not con-
sider the additional problem dimension of reserving less resources
than those requested by theSPs, which is the focus of overbooking.
The literature considering overbooking as an approach to maxi-
mize NSaaS revenues for the operator is in fact very thin. Sextonet
al. [28] derive analytical models of the performance of slicing with
overbooking under perfect prediction, but does not present a prac-
tical solution to the problem. Saxenaet al.[27] propose a model
for network slice overbooking, which relies on a Long Short-Term
Memory (LSTM) neural network for demand forecasting, and a
Reinforcement Learning (RL) approach for admission control. Yet,
the solution operates on in�exible SLA costs and does not tackle
the resource allocation part of the problem. The current state of the
art in NSaaS overbooking is represented by the work by Salvatet
al. [26], who �rst introduced the concept and demonstrated its
practical viability in a small-scale experimental platform [36]. They
propose a solution to the joint admission control and resource reser-
vation problem under overbooking: the approach is based on tra�c
prediction via multiplicative Holt-Winters exponential smoothing,
combined with a stochastic yield management optimization prob-
lem for slice admission and resource allocation. We use this solution
as a benchmark in our performance evaluation. It is also worth not-
ing that ours is one of the very few works in the network slicing
literature to build upon large-scale measurements of tenant de-
mands, and the very �rst to do so in the context of overbooking for
NSaaS. Indeed, the vast majority of the literature relies on synthetic
data [12], which undermines the dependability of results. When
real-world data is employed, it often describes aggregate tra�c
over all services and is thus not representative of actual tenant
demands [13, 14, 34]. Evaluations of NSaaS management solutions
with service-level measurements are rare, and, as mentioned above,
do not consider overbooking [17]. Indeed, previous solutions for
NSaaS overbooking have been tested with synthetic workloads
only [26], or on traces of resource utilization in cloud datacenters
that are hardly representative of mobile service demands [27]. By
evaluating NSaaS overbooking solutions with production-level mo-
bile tra�c measurements, we o�er an unprecedented view on the
real-world performance of slicing.

3 SYSTEM MODEL
We consider a dynamic resource allocation scenario where anMNO
running the mobile network infrastructure aims at maximizing the
pro�t obtained from NSaaS. To this end, theMNO needs to take
decisions on admission control of slice requests and allocation of
resources2 to active slices. The problem can be instantiated at any
target network location where slicing is implemented,e.g., from
individual Remote Units (RUs) where spectrum can be sliced, all the
way to Core Network (CN) datacenters where compute and memory
resources are reserved to run slice-tailored VNFs. Letlayer; denote
the layer whose nodes serve, on average, the aggregated tra�c of
; RUs; then for each node at layer;, we model the system as follows.

3.1 NSaaS operation
TheMNOserves a set of# Service Providers (SPs), which we denote
by S , fB=g=2N , jSj = # , where we de�neN , f 1• ” ” ” • #g for
any natural number# . TheMNO monitors the demand generated
by eachSPwithin a short interval (e.g., per minute in Fig. 1a). We
denote the tra�c generated bySPBat the monitoring interval:
as�B»: ¼(see Fig. 1a). At any time, a service provider can request a
network slice associated to an SLA with the following parameters.

� ) slice: time during which the slice must be active and the related
SLA satis�ed,e.g., the whole span of Fig. 1a.

� ) SLA: duration of anSLA blockof anSPrequest,i.e., time interval
during which a constant capacity is requested by the SP.

� �� ¹Pº
B ¹Cº: Requested capacity by anSPBfor theC-th SLA block,e.g.,

the ordinates of the4 constant segments requested in Fig. 1a.
� " B�� ¹Pº

B ¹Cº: Price that theSPBis o�ering to pay for theC-th SLA
block. We model prices as linearly proportional to the capacity
by a factor" B (in $/bps), but other de�nitions are possible.

TheMNO decides whether to accept the slice requests,3 and what
resources to allocate to them if accepted. These decision are based
on the request attributes above, as well as on the next parameters.

� ) hor: time horizon for the overall system optimization,e.g., the
multiple repetitions of the span of Fig. 1a.

� ) dec: time interval between admission decisions. The operation
is batched, such that theMNO considers all requests arrived over
the last) dec, decides which slices are accepted, continued or
dismissed, and estimates the resources that shall be dynamically
reserved to each slice for its duration.

� ) RA: duration of oneResource Allocation (RA) block, i.e., the in-
terval during which the capacity allocated by theMNO to a slice
remains constant, which is typically bounded by the technol-
ogy available at the target network domain. We also de�ne as
=RA , ) SLA

) RA
the number of RA blocks per SLA block,i.e., the

amount of re-allocation opportunities for theMNO while the
requested capacity�� ¹Pº

B stays �xed. As an example, in Fig. 1a we
have) RA = 30and) SLA = 120minutes, yielding=RA = 4.

� � ¹; º
A : capacity available at the target nodeAof layer;, which sets

the boundary to the total tra�c demand that can be served at
any time instant, as shown in Fig. 1b.

� � ¹Oº
B ¹C•=º: Capacity actually reserved by the MNO for sliceB.

2We use the termsresourcesand capacityinterchangeably in the following, as the
amount of dedicated resources directly determines the capacity that can be provisioned.
3We refer to the slice that serves the tra�c of SPBas sliceB, 8B 2 S.
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Figure 2: SLA function adopted for our experiments.

� 2opex: MNO's OPEX (in$/bps) of reserving one unit of capacity
to a slice during a whole RA block, due,e.g., to the energy or
monetary cost of running dedicated VNF containers or CPU cores.

� d>?: operational pro�t ratio between the revenue from theSP
and the OPEX of reserved resources,i.e., " B•¹=RA2opex).4

Based on the above, we de�ne a hierarchical time indexing. The
indexCrefers to the SLA block index, and the notation¹C•=º refers
to the=-th RA block of theC-th SLA block;e.g., in Fig. 1a,) RA is
represented for the¹3•2º RA block. Moreover, we consider�B¹C•=º ,
max: 2») RA¼�B»: ¼as the real demand in the¹C•=º RA block. To avoid
cluttering notation, we focus hereinafter on a given nodeAin layer;,
and omit the dependence onAand;. Also, we let) slice = ) SLA = ) dec,
i.e., a slice has the same duration () slice) of an AC time slot of the
MNO () dec), and the capacity requested bySPBis constant for
the whole duration of the slice () SLA), typically in the order of
hours. In this way, a certain scenario can be succinctly referred to
asE = f) hor•)SLA•)RA• � g.

3.2 SLA function
The SLA de�nes the monetary compensation or penalty associated
to an accepted slice. It is modeled as a function that depends on the
requested capacity (for which theSPpays a fee as set out in Sec. 3.1)
and the actual tra�c served by theMNO. Speci�cally, at the=-th
RA block of theC-th SLA block, theMNO commits to serve sliceB
with a capacity� 2

B¹C•=º , min¹�B¹C•=º• �� ¹Pº
B ¹Cºº: if the slice tra�c

is below the level requested in the SLA, the operator only needs to
serve such tra�c and not the requested capacity in the SLA. The
actual served tra�c is � e‚

B ¹C•=º = min¹�B¹C•=º• � ¹Oº
B ¹C•=ºº, i.e., an

over-allocation of resources does not bring any bene�t to theMNO.
The full monetary compensation set out by the SLA as per Sec. 3.1

is paid by theSPBto the MNO when � e‚
B ¹C•=º � � 2

B¹C•=º. If instead
the served demand is below that theMNO committed to accommo-
date, the SLA de�nes a reduction of theMNO's revenues. We model
the compensation as a generic functionSLAB¹VB¹C•=ºº, where

VB¹C•=º , min
�
1• � e‚

B ¹C•=º
� 2
B ¹C•=º

�
(1)

is the fraction of committed demand that is e�ectively served by
the MNO, capped at 1 in the case whereMNOunnecessarily serves
more tra�c than committed.

While our de�nition of SLA above is general, and our solution
can accommodate other expressions, for the experiments carried out
in this paper we leverage the SLA portrayed in Fig. 2. The rationale
is that the agreed compensation drops linearly as theMNO fails to
deliver the required capacity down to 80% of what it committed to.
Below such a threshold, theMNO must pay a monetary fee (i.e., a
negative gain in the plot) to theSP, which grows up to the original
compensation when only 60% of the slice tra�c is served.

4=RA = ) SLA•) RA transforms the cost per RA block into cost per SLA block.

Figure 3: Overall architecture of kaNSaaS, with long-term and
short-term prediction-enabled AC and RA components.

3.3 MNO pro�t
TheMNO's objective is to maximize the total net pro�t over the
operating horizon) hor. The pro�t is the result of the overall revenue
obtained from the slice brokering minus the costs incurred by the
operator,i.e., SLA violations that may induce a penalty as discussed
in Sec. 3.2 and operating expenses derived from allocating the
network resources. Formally:
� Revenuescorrespond to the compensations from meeting SLAs

with SPs, i.e., " B�� ¹Pº
B ¹Cº for C-th SLA block of duration) SLA, pos-

sibly decreased according toSLAB¹VB¹C•=ºº.
� SLA violation costs are incurred when accepted slices are poorly

served. This cost is embedded in the SLA de�nition when it takes
valuesŸ 0, hence a single expression" B�� ¹Pº

B ¹Cº � SLAB¹VB¹C•=ºº
captures both revenues and SLA violation costs.

� OPEX costsare proportional to the capacity� ¹Oº
B ¹C•=º actually

reserved by the MNO, by the2opex factor.
� Pro�ts , denoted by?E, combine the previous as follows

?E =
Õ

C2 T

Õ

B2S

GB¹Cº
Õ =RA

==1

�
" B �� ¹Pº

B ¹Cº
=RA

SLAB¹VB¹C•=ºº

� 2opex�
¹Oº
B ¹C•=º

�
” (2)

In (2), the binary variableGB¹Cº 2 f0•1g is set to 1 if sliceBis
accepted in SLA blockC. In case the slice is admitted, the pro�t is
the di�erence between the revenue (or SLA violation cost) and the
OPEX cost across all=RA RA blocks composing the SLA block. The
total pro�t is then computed over all slice requestsS and through
the whole temporal set of SLA blocksT , fCj C2 ») hor•) SLA¼g.

4 KANSAAS
In order to maximize theMNO pro�t in (2), we propose a novel
solution for overbooking-awareNSaaS, orkaNSaaS. Our approach
addresses the joint problem of¹8º Admission Control(AC),i.e., de-
ciding which slice requests to accept, and¹88º Resource Allocation
(RA),i.e., determining how many resources to allocate to each of
the accepted slices. It is important to note that both parts of the
problem are inherentlyanticipatoryin nature, but operateat dif-
ferent timescales. In AC, theMNO must admit slices at the start of
each SLA block so as to ensure that their demand is accommodated
during the future) SLA time interval. In RA, theMNOhas to reserve
resources at the beginning of each RA block in a way to best serve
the tra�c through the following ) RA interval.
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