• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computing the Relative Value of Spatio-Temporal Data in Data Marketplaces

Compartir
Ficheros
Artículo principal (3.694Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1617
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Andres, Santiago; Paraschiv, Marius; Laoutaris, Nikolaos
Fecha
2022-11
Resumen
Spatio-temporal information is used for driving a plethora of intelligent transportation, smart-city and crowd-sensing applications.Data is now a valuable production factor and data marketplaces have appeared to help individuals and enterprises bring it to market and the ever-growing demand. Such marketplaces are able to combine data from different sources to meet the requirements of different applications. In this paper we study the problem of estimating the relative value of spatio-temporal datasets combined in marketplaces for predicting transportation demand and travel time in metropolitan areas. Using large datasets of taxi rides from Chicago, Porto and New York we show that simplistic but popular approaches for estimating the relative value of data, such as splitting it equally among the data sources, more complex ones based on volume or the “leave-one-out” heuristic, are inaccurate. Instead, more complex notions of value from economics and game-theory, such as the Shapley value, need to be employed if one wishes to capture the complex effects of mixing different datasets on the accuracy of forecasting algorithms. This does not seem to be a coincidental observation related to a particular use case but rather a general trend across different use cases with different objective functions.
Compartir
Ficheros
Artículo principal (3.694Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1617
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!