• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scalable machine learning algorithms to design massive MIMO systems

Compartir
Ficheros
MSWIM2021_MIMO_5pages_updated_results (2).pdf (491.6Kb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/1529
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Garcia Marti, Dolores; Badini, Damiano; De Donno, Danilo; Widmer, Joerg
Fecha
2021-11-05
Resumen
Machine learning is a highly promising tool to design the physical layer of wireless communication systems, but its scaling properties for this purpose have not been widely studied. Machine learning algorithms are typically evaluated to learn SISO communications and low modulation orders, whereas current wireless standards use MIMO and high-order modulation schemes to increase capacity. The memory requirements of current machine learning algorithms for wireless communications increase exponentially with the number of antennas and thus they cannot be used for advanced physical layers and massive MIMO. In this paper, we study the requirements of end-to-end machine learning models for large-scale MIMO systems, determine the bottlenecks of the architecture, and design different solutions that vastly reduce overhead and allow training higher MIMO and modulation orders. We show that by training the autoencoder in a bit-wise manner, the memory requirements are reduced by several orders of magnitude, which is a critical step for machine learning-based physical layer design in practical scenarios. Besides the reduced memory requirements, our design also improves performance over the classical autoencoder for MIMO systems.
Compartir
Ficheros
MSWIM2021_MIMO_5pages_updated_results (2).pdf (491.6Kb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/1529
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!