• español
    • English
  • Login
  • English 
    • español
    • English
  • Publication Types
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
View Item 
  •   IMDEA Networks Home
  • View Item
  •   IMDEA Networks Home
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scalable machine learning algorithms to design massive MIMO systems

Share
Files
MSWIM2021_MIMO_5pages_updated_results (2).pdf (491.6Kb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/1529
Metadata
Show full item record
Author(s)
Garcia Marti, Dolores; Badini, Damiano; De Donno, Danilo; Widmer, Joerg
Date
2021-11-05
Abstract
Machine learning is a highly promising tool to design the physical layer of wireless communication systems, but its scaling properties for this purpose have not been widely studied. Machine learning algorithms are typically evaluated to learn SISO communications and low modulation orders, whereas current wireless standards use MIMO and high-order modulation schemes to increase capacity. The memory requirements of current machine learning algorithms for wireless communications increase exponentially with the number of antennas and thus they cannot be used for advanced physical layers and massive MIMO. In this paper, we study the requirements of end-to-end machine learning models for large-scale MIMO systems, determine the bottlenecks of the architecture, and design different solutions that vastly reduce overhead and allow training higher MIMO and modulation orders. We show that by training the autoencoder in a bit-wise manner, the memory requirements are reduced by several orders of magnitude, which is a critical step for machine learning-based physical layer design in practical scenarios. Besides the reduced memory requirements, our design also improves performance over the classical autoencoder for MIMO systems.
Share
Files
MSWIM2021_MIMO_5pages_updated_results (2).pdf (491.6Kb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/1529
Metadata
Show full item record

Browse

All of IMDEA NetworksBy Issue DateAuthorsTitlesKeywordsTypes of content

My Account

Login

Statistics

View Usage Statistics

Dissemination

emailContact person Directory wifi Eduroam rss_feed News
IMDEA initiative About IMDEA Networks Organizational structure Annual reports Transparency
Follow us in:
Community of Madrid

EUROPEAN UNION

European Social Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

European Structural and Investment Fund

© 2021 IMDEA Networks. | Accesibility declaration | Privacy Policy | Disclaimer | Cookie policy - We value your privacy: this site uses no cookies!