• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Model-free machine learning of wireless SISO/MIMO communications

Compartir
Ficheros
ACM_EXT_mswim_no_format.pdf (1.741Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/1528
DOI: 10.1016/j.comcom.2021.09.033
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Garcia Marti, Dolores; Lacruz, Jesús Omar; Badini, Damiano; De Donno, Danilo; Widmer, Joerg
Fecha
2021-10-06
Resumen
Machine learning is a highly promising tool to design the physical layer of wireless communication systems, but the training usually requires an explicit model of the signal distortion as it undergoes transmission over a wireless channel. As data rates, number of MIMO streams and carrier frequencies increase to satisfy the demand for wireless capacity, it becomes difficult to design hardware with few imperfections and to model the imperfections that there are. New machine learning schemes for the physical layer do not require an explicit model but can implicitly learn the end-to-end link including channel characteristics and non-linearities of the system directly from the training data. In this paper, we present a novel neural network architecture that provides an explicit stochastic model for both SISO and MIMO channels, by learning the parameters of a Gaussian mixture distribution from real channel samples. We use this channel model in conjunction with an autoencoder to learn a suitable modulation scheme. We experimentally validate our proposed model in an FPGA-based millimeter-wave testbed for both SISO and MIMO channels, showing that it is able to reproduce the channel characteristics with good accuracy.
Compartir
Ficheros
ACM_EXT_mswim_no_format.pdf (1.741Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/1528
DOI: 10.1016/j.comcom.2021.09.033
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!