Multipath TCP in smartphones equipped with millimeter wave radios
Fecha
2022-02Resumen
The well-known susceptibility of millimeter wave links to human blockage and client mobility has recently motivated researchers to propose approaches that leverage both 802.11ad radios (operating in the 60 GHz band) and legacy 802.11ac radios (operating in the 5 GHz band) in dual-band commercial off-the-shelf devices to simultaneously provide Gbps throughput and reliability. One such approach is via Multipath TCP (MPTCP), a transport layer protocol that is transparent to applications and requires no changes to the underlying wireless drivers. However, MPTCP (as well as other bundling approaches) have only been evaluated to date in 60 GHz WLANs with laptop clients.
In this work, we port for first time the MPTCP source code to a dual-band smartphone equipped with an 802.11ad and an 802.11ac radio. We discuss the challenges we face and the system-level optimizations required to enable the phone to support Gbps data rates and yield optimal MPTCP throughput (i.e., the sum of the individual throughputs of the two radios) under ideal conditions. We also evaluate for first time the power consumption of MPTCP in a dual-band 802.11ad/ac smartphone and provide recommendations towards the design of an energy-aware MPTCP scheduler. We make our source code publicly available to enable other researchers to experiment with MPTCP in smartphones equipped with millimeter wave radios.