Mostrar el registro sencillo del ítem

dc.contributor.authorAlzadjali, Aziza
dc.contributor.authorMushtaq, Maria
dc.contributor.authorEsposito, Flavio
dc.contributor.authorFiandrino, Claudio 
dc.contributor.authorDeogun, Jitender Singh
dc.date.accessioned2021-07-13T09:50:19Z
dc.date.available2021-07-13T09:50:19Z
dc.date.issued2021-06
dc.identifier.urihttp://hdl.handle.net/20.500.12761/989
dc.description.abstractNetwork Function Virtualization (NFV) replaces physical middleboxes with elastic Virtual Network Functions (VNFs). Those VNFs need to be instantiated, and their resources dynamically scaled to meet application and traffic fluctuation requirements. Despite recent extensive research, deciding how to map virtual resources optimally to the underlying infrastructure remains practically a challenge. Existing approaches mostly assign fixed resources to each VNF instance, and transfer virtual flows using a single physical path, without prior knowledge of traffic patterns and available bandwidth. Such resource binding strategies lead to suboptimal physical link utilization. We advance the state of the art in this regard by presenting OctoMap, a system designed to support with learning theory any chain embedding algorithm. OctoMap utilizes a Convolution Neural Network for traffic prediction and provisioning, and a contextual multi-armed bandit algorithm to solve the online VNF chain embedding problem. We show the performance benefits of OctoMap with a trace-driven simulation campaign using publicly available datasets. In particular, we show how OctoMap reduces the costs of provisioning network services under node and link constraints, comparing different predictors and different multi-armed bandit policies.
dc.titleOctoMap: Supporting Service Function Chaining via Supervised Learning and Online Contextual Bandit
dc.typeconference object
dc.conference.date28 June - 2 July 2021
dc.conference.placeVirtual
dc.conference.titleThe 7th IEEE International Conference on Network Softwarization (IEEE NetSoft 2021)*
dc.event.typeconference
dc.pres.typepaper
dc.place.issuedTokyo, Japan
dc.subject.keywordService Function Chaining
dc.subject.keywordNetwork Function Virtualization
dc.subject.keywordMachine Learning
dc.subject.keywordContextual Bandit
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttp://eprints.networks.imdea.org/id/eprint/2346


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem