• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

How shrinkage can be used for robust methods

Compartir
Ficheros
posterbymatElisa.pdf (2.500Mb)
Certificado_Bymat_Award_ElisaCabana.pdf (1010.Kb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/925
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Cabana, Elisa
Fecha
2020-12-01
Resumen
In this work, we propose a new methodology, based on the notion of shrinkage, for outlier detection and robust regression. First, we define robust estimators of the location vector and the covariance matrix in case of multivariate data. Then, a robust Mahalanobis distance can be computed based on these estimators, for the task of outlier detection. Some properties are investigated, such as the affine equivariance and the breakdown value. The performance of the proposal is illustrated through the comparison to other robust techniques from the literature, in a simulation study and with a real example of breast cancer data. The robust alternatives are also reviewed, highlighting their advantages and disadvantages. The performance results as well as the significantly smaller computational time show the advantages of the proposal. With the proposed robust estimators, a robust regression approach is proposed as well. It is compared to the classical Ordinary Least Squares (OLS) approach and the robust alternatives from the literature. A real socio-economic dataset about the Living Environment Deprivation (LED) of areas in Liverpool (UK), is studied. The results from the simulations and the real dataset example show the advantages of the proposed robust estimator in regression. Furthermore, the proposed robust regression method has improved performance compared to other machine learning techniques previously used for this data, with the advantage of interpretability.
Compartir
Ficheros
posterbymatElisa.pdf (2.500Mb)
Certificado_Bymat_Award_ElisaCabana.pdf (1010.Kb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/925
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!