• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

vrAIn: Deep Learning based Orchestration for Computing and Radio Resources in vRANs

Compartir
Ficheros
vrAIn_Deep_Learning_based_Orchestration_Computing_Radio_Resources_VRANs_2020_EN.pdf (6.859Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/910
ISSN: 1536-1233
DOI: 10.1109/TMC.2020.3043100
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Ayala-Romero, Jose A.; Garcia-Saavedra, Andres; Gramaglia, Marco; Costa-Perez, Xavier; Banchs, Albert; Alcaraz, Juan J.
Fecha
2020-12-08
Resumen
The virtualization of radio access networks (vRAN) is the last milestone in the NFV revolution. However, the complex dependencies between computing and radio resources make vRAN resource control particularly daunting. We present vrAIn, a dynamic resource orchestrator for vRANs based on deep reinforcement learning. First, we use an autoencoder to project high-dimensional context data (traffic and channel quality patterns) into a latent representation. Then, we use a deep deterministic policy gradient (DDPG) algorithm based on an actor-critic neural network structure and a classifier to map contexts into resource control decisions. We have evaluated vrAIn experimentally, using an open-source LTE stack over different platforms, and via simulations over a production RAN. Our results show that: (i) vrAIn provides savings in computing capacity of up to 30% over CPU-agnostic methods; (ii) it improves the probability of meeting QoS targets by 25% over static policies; (iii) upon computing capacity under-provisioning, vrAIn improves throughput by 25% over state-of-the-art schemes; and (iv) it performs close to an optimal offline oracle. To our knowledge, this is the first work that thoroughly studies the computational behavior of vRANs and the first approach to a model-free solution that does not need to assume any particular platform or context.
Compartir
Ficheros
vrAIn_Deep_Learning_based_Orchestration_Computing_Radio_Resources_VRANs_2020_EN.pdf (6.859Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/910
ISSN: 1536-1233
DOI: 10.1109/TMC.2020.3043100
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!