Mostrar el registro sencillo del ítem

dc.contributor.authorZhang, Chaoyun
dc.contributor.authorFiore, Marco 
dc.contributor.authorMurray, Iain
dc.contributor.authorPatras, Paul 
dc.date.accessioned2021-07-13T09:46:30Z
dc.date.available2021-07-13T09:46:30Z
dc.date.issued2021-02-02
dc.identifier.urihttp://hdl.handle.net/20.500.12761/906
dc.description.abstractThis paper introduces CloudLSTM, a new branch of recurrentneural models tailored to forecasting over data streams generated by geospatial point-cloud sources. We design a Dynamic Point-cloud Convolution (DConv) operator as the core component of CloudLSTMs, which performs convolution directly over point-clouds and extracts local spatial features from sets of neighboring points that surround different elements of the input. This operator maintains the permutation invariance of sequence-to-sequence learning frameworks, while representing neighboring correlations at each time step - an important aspect in spatiotemporal predictive learning. The DConv operator resolves the grid-structural data requirements of existing spatiotemporal forecasting models and can be easily plugged into traditional LSTM architectures with sequence-to-sequence learning and attention mechanisms. We apply our proposed architecture to two representative, practical use cases that involve point-cloud streams, i.e., mobile service traffic forecasting and air quality indicator forecasting. Our results,obtained with real-world datasets collected in diverse scenarios for each use case, show that CloudLSTM delivers accurate long-term predictions, outperforming a variety of competitor neural network models.
dc.language.isoeng
dc.titleCloudLSTM: A Recurrent Neural Model for Spatiotemporal Point-cloud Stream Forecastingen
dc.typeconference object
dc.conference.date2-9 February 2021
dc.conference.placeOnline (previously Vancouver, Canada)
dc.conference.titleThe 35th AAAI Conference on Artificial Intelligence (AAAI 2021)*
dc.event.typeconference
dc.pres.typepaper
dc.type.hasVersionVoR
dc.rights.accessRightsopen access
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttp://eprints.networks.imdea.org/id/eprint/2259


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem