• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Processing ANN Traffic Predictions for RAN Energy Efficiency

Compartir
Ficheros
Processing_ANN_Traffic_Predictions_RAN_Energy_Efficiency_2020_EN.pdf (1.980Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/883
DOI: https://doi.org/10.1145/3416010.3423222
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Vallero, Greta; Renga, Daniela; Meo, Michela; Ajmone Marsan, Marco
Fecha
2020-11-16
Resumen
The field of networking, like many others, is experiencing a peak of interest in the use of Machine Learning (ML) algorithms. In this paper, we focus on the application of ML tools to resource management in a portion of a Radio Access Network (RAN) and, in particular, to Base Station (BS) activation and deactivation, aiming at reducing energy consumption while providing enough capacity to satisfy the variable traffic demand generated by end users. In order to properly decide on BS (de)activation, traffic predictions are needed, and Artificial Neural Networks (ANN) are used for this purpose. Since critical BS (de)activation decisions are not taken in proximity of minima and maxima of the traffic patterns, high accuracy in the traffic estimation is not required at those times, but only close to the times when a decision is taken. This calls for careful processing of the ANN traffic predictions to increase the probability of correct decision. Numerical performance results in terms of energy saving and traffic lost due to incorrect BS deactivations are obtained by simulating algorithms for traffic predictions processing, using real traffic as input. Results suggest that good performance trade-offs can be achieved even in presence of non-negligible traffic prediction errors, if these forecasts are properly processed.
Compartir
Ficheros
Processing_ANN_Traffic_Predictions_RAN_Energy_Efficiency_2020_EN.pdf (1.980Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/883
DOI: https://doi.org/10.1145/3416010.3423222
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!