Show simple item record

dc.contributor.authorMontori, Federico
dc.contributor.authorBedogni, Luca
dc.contributor.authorFiandrino, Claudio 
dc.contributor.authorCapponi, Andrea
dc.contributor.authorBononi, Luciano
dc.date.accessioned2021-07-13T09:43:51Z
dc.date.available2021-07-13T09:43:51Z
dc.date.issued2020-09-01
dc.identifier.urihttp://hdl.handle.net/20.500.12761/851
dc.description.abstractMobile crowdsensing (MCS) has become a popular paradigm for data collection in urban environments. In MCS systems, a crowd supplies sensing information for monitoring phenomena through mobile devices. Depending on the degree of involvement of users, MCS systems can be participatory, opportunistic or hybrid, which combines strengths of above approaches. Typically, a large number of participants is required to make a sensing campaign successful which makes impractical to build and deploy large testbeds to assess the performance of MCS phases like data collection, user recruitment, and evaluating the quality of information. Simulations offer a valid alternative. In this paper, we focus on hybrid MCS and extend CrowdSenSim 2.0 in order to support such systems. Specifically, we propose an algorithm for efficient re-route users that would offer opportunistic contribution towards the location of sensitive MCS tasks that require participatory-type of sensing contribution. We implement such design in CrowdSenSim 2.0, which by itself extends the original CrowdSenSim by featuring a stateful approach to support algorithms where the chronological order of events matters, extensions of the architectural modules, including an additional system to model urban environments, code refactoring, and parallel execution of algorithms.
dc.language.isoeng
dc.titlePerformance evaluation of hybrid crowdsensing systems with stateful CrowdSenSim 2.0 simulatoren
dc.typejournal article
dc.journal.titleComputer Communications
dc.rights.accessRightsopen access
dc.volume.number161
dc.identifier.urlhttp://www.sciencedirect.com/science/article/pii/S0140366420309361
dc.page.final237
dc.page.initial225
dc.subject.keywordMobile crowdsensing
dc.subject.keywordSimulation
dc.subject.keywordModeling
dc.subject.keywordDistributed algorithms
dc.description.statuspub
dc.eprint.idhttp://eprints.networks.imdea.org/id/eprint/2186


Files in this item

This item appears in the following Collection(s)

Show simple item record