• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Machine Learning-based Framework for Optimizing the Operation of Future Networks

Compartir
Ficheros
A_Machine_Learning-based_Framework.pdf (2.255Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/805
ISSN: 0163-6804
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Fiandrino, Claudio; Zhang, Chaoyun; Patras, Paul; Banchs, Albert; Widmer, Joerg
Fecha
2020-04
Resumen
The fifth generation of mobile networks (5G) and beyond are not only sophisticated and difficult to manage, but must also satisfy a wide range of stringent performance requirements and adapt quickly to changes in traffic and network state. Advances in machine learning and parallel computing underpin new powerful tools that have the potential to tackle these complex challenges. In this paper, we develop a general machine learning- based framework that leverages artificial intelligence to forecast future traffic demands and characterize traffic features. This enables to exploit such traffic insights to improve the performance of critical network control mech- anisms, such as load balancing, routing, and scheduling. In contrast to prior works that design problem-specific machine learning algorithms, our generic approach can be applied to different network functions, allowing to re-use existing control mechanisms with minimal modifications. We explain how our framework can orchestrate ML to improve two different network mechanisms. Further, we undertake validation by implementing one of these, i.e., mobile backhaul routing, using data collected by a major European operator and demonstrating a 3x reduction of the packet delay, compared to traditional approaches.
Compartir
Ficheros
A_Machine_Learning-based_Framework.pdf (2.255Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/805
ISSN: 0163-6804
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!