Mostrar el registro sencillo del ítem

dc.contributor.authorMoreno, Adriana
dc.contributor.authorLacruz, Jesús Omar 
dc.contributor.authorWidmer, Joerg 
dc.date.accessioned2021-07-13T09:41:38Z
dc.date.available2021-07-13T09:41:38Z
dc.date.issued2020-05-19
dc.identifier.citation[1] A. Niknejad and H. Hashemi,mm-Wave silicon technology: 60 GHz andbeyond. Springer Science and Business Media, 2008. [2] A. V. Lopez, A. Chervyakov, G. Chance, S. Verma, and Y. Tang,“Opportunities and Challenges of mmWave NR,”IEEE WirelessCommunications, vol. 26, pp. 4–6, April 2019. [3] S. K. Saha, Y. Ghasempour, M. K. Haider, T. Siddiqui, P. D. Melo,N. Somanchi, L. Zakrajsek, A. Singh, R. Shyamsunder, O. Torres,D. Uvaydov, J. M. Jornet, E. W. Knightly, D. Koutsonikolas, D. A.Pados, Z. Sun, and N. Thawdar, “X60: A Programmable Testbedfor Wideband 60 GHz WLANs with Phased Arrays,”ComputerCommunications, vol. 133, pp. 77–88, 2019. [4] J. Zhang, X. Zhang, P. Kulkarni, and P. Ramanathan, “OpenMili: A60 GHz Software Radio with a Programmable Phased-array Antenna:Demo,” inProceedings of the 22Nd Annual International Conferenceon Mobile Computing and Networking, MobiCom ’16, (New York, NY,USA), pp. 485–486, ACM, 2016. [5] O. Abari, H. Hassanieh, M. Rodriguez, and D. Katabi, “Poster: AMillimeter Wave Software Defined Radio Platform with Phased Arrays,”inProceedings of the 22Nd Annual International Conference on MobileComputing and Networking, MobiCom ’16, (New York, NY, USA),pp. 419–420, ACM, 2016. [6] IEEE 802.11 working group, “IEEE Standard for Informationtechnology–Telecommunicationsandinformationexchangebetween systems–Local and metropolitan area networks–Specificrequirements-Part 11: Wireless LAN Medium Access Control(MAC) and Physical Layer (PHY) Specifications Amendment 3:Enhancements for Very High Throughput in the 60 GHz Band,”IEEEStd 802.11ad-2012, 2012. [7] A. Moreno, J. O. Lacruz, and J. Widmer, “Millimeter Wave SDR-basedOpen Experimentation Platform (MISO).” http://wireless.networks.imdea.org/miso, 2019. [8] W.-C. Liu, M.-S. Sie, E. W. J. Leong, Y.-C. Yao, C.-W. Jen, W.-C.Liu, C.-F. Wu, and S.-J. Jou, “Dual-Mode All-Digital BasebandReceiver With a Feed-Forward and Shared-Memory Architecture forDual-Standard Over 60 GHz NLOS Channel,”IEEE Transactions onCircuits and Systems I: Regular Papers, vol. 64, pp. 608–618, March2017. [9] N. Preyss and A. Burg, “Digital synchronization for symbol-spacedIEEE802.11ad Gigabit mmWave systems,” in2015 IEEE InternationalConference on Electronics, Circuits, and Systems (ICECS), pp. 637–640,Dec 2015. [10] P. Nerella, “IEEE 802.11ad PHY Waveform Generation API,” 2014. [11] P. Meher, J. Valls, K. Juang, Sridharan, and K. Maharatna, “50Years of CORDIC: Algorithms, Architectures, and Applications,”IEEETransactions on Circuits and Systems I: Regular Papers, vol. 56,pp. 1893–1907, Sep. 2009. [12] W. Liu, F. Yeh, T. Wei, C. Chan, and S. Jou, “A Digital Golay-MPICTime Domain Equalizer for SC/OFDM Dual-Modes at 60 GHz Band,”IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60,pp. 2730–2739, Oct 2013. [13] SIVERSIMA,EVK06002 Development Kit, accessed August 18, 2019.https://www.siversima.com/product/evk-600200.
dc.identifier.urihttp://hdl.handle.net/20.500.12761/798
dc.description.abstractMillimeter-wave (mm-wave) communications, as any other emerging technology, require suitable experimentation platforms that allow validation and field tests in both academic and industry research environments. Existing platforms formm-wave systems are based on Commercial-Off-The-Shelf(COTS) devices or expensive proprietary hardware platforms. In this paper we propose a mixed software-hardware testbedfor mm-wave experimentation using Software Defined Radio(SDR) devices. Specifically, we design and implement the hardware processing blocks required to decode the preamble of frames that follow the structure of IEEE 802.11ad compliant frames, working at a scaled-down bandwidth, along with their integration in X310 USRP devices using the RFNoC framework and 60GHz transceivers. The testbed is validated for different indoor channels with real-time Channel Impulse Response (CIR)measurements. The design exploits the maximum bandwidth for X310 devices while leaving enough FPGA logic space (≈60%),for further upgrades and extension of the system.
dc.language.isoeng
dc.titleOpen Source RFNoC-Based Testbed for Millimeter-Wave Experimentation Using USRP Software Defined Radiosen
dc.typeconference object
dc.conference.date17-20 May 2020
dc.conference.placeSevilla, Spain
dc.conference.titleIEEE International Symposium on Circuits & Systems (ISCAS 2020)*
dc.event.typeconference
dc.pres.typeposter
dc.type.hasVersionSMUR
dc.rights.accessRightsopen access
dc.subject.keywordmm-wave
dc.subject.keywordtestbed
dc.subject.keyword802.11ad
dc.subject.keywordSoftware DefinedRadio
dc.subject.keywordRFNoC
dc.subject.keywordUSRP
dc.subject.keywordFPGA
dc.description.refereedFALSE
dc.description.statuspub
dc.eprint.idhttp://eprints.networks.imdea.org/id/eprint/2117


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem