• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

DeepCog: Optimizing Resource Provisioning in Network Slicing with AI-based Capacity Forecasting

Compartir
Ficheros
bega_jsac19.pdf (9.343Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/770
ISSN: 0733-8716
DOI: DOI: 10.1109/JSAC.2019.2959245
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Bega, Dario; Gramaglia, Marco; Fiore, Marco; Banchs, Albert; Costa-Perez, Xavier
Fecha
2020-02
Resumen
The dynamic management of network resources is both a critical and challenging task in upcoming multi-tenant mobile networks, which requires allocating capacity to individual network slices so as to accommodate future time-varying service demands. Such an anticipatory resource configuration process must be driven by suitable predictors that take into account the monetary cost associated to overprovisioning or underprovisioning of networking capacity, computational power, memory, or storage. Legacy models that aim at forecasting traffic demands fail to capture these key economic aspects of network operation. To close this gap, we present DeepCog, a deep neural network architecture inspired by advances in image processing and trained via a dedicated loss function. Unlike traditional traffic volume predictors, DeepCog returns a cost-aware capacity forecast, which can be directly used by operators to take short- and long-term reallocation decisions that maximize their revenues. Extensive performance evaluations with real-world measurement data collected in a metropolitan-scale operational mobile network demonstrate the effectiveness of our proposed solution, which can reduce resource management costs by over 50% in practical case studies.
Compartir
Ficheros
bega_jsac19.pdf (9.343Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/770
ISSN: 0733-8716
DOI: DOI: 10.1109/JSAC.2019.2959245
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!